# CSE 3451 Signals and Systems

#### H. Chesser (CSEB 1012U)

### Agenda

- Course Overview and Mechanics:
  - Syllabus
  - Marking
  - Schedule
  - Labs
  - Etc
- Intro to Signals (Chapter 1)
- Assignment 1



### **Course Content, Format**

- Continuous (CT) and sampled or discrete (DT) signals
- Theory
  - Behaviour of linear differential equations with constant coefficients
  - Signal analysis/synthesis using transforms (Fourier, Laplace, Z) and convolution
- Applications
  - filtering
  - signal/image processing
  - feedback controls
- Two 90-minute lectures, 3-hour lab each week



#### **Textbook, Tools**



- M. Mandal and A. Asif, Continuous-time and Discrete-time Signals and Systems, Cambridge University Press, 2007, ISBN-13: 978-0-521-85455-9
- Lab handouts extracted from Stonick, V., Bradley, K., "Labs for Signals and Systems Using MatLab", PWS Publishing Co., 1996, ISBN 0-534-93808-6
- MatLab available on 3<sup>rd</sup> floor lab, most engineering lab computers (student version ~\$100)
- Open source GNU Octave also can be used obtained here:

http://www.gnu.org/software/octave/

### **Course Grading**



| Assignments, Quizzes (10% each) | 20%  |
|---------------------------------|------|
| Lab Projects                    | 25%  |
| Mid-term                        | 15%  |
| Exam                            | 40%  |
| TOTAL                           | 100% |

#### Rough Lecture/Assignment/Quiz/Lab Schedule



| Week | Lab                          | Day | Date   | Assignment/Quiz  | Lecture Topic (Reading)                                                                                                                                                                                  |  |
|------|------------------------------|-----|--------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1    |                              | R   | 4-Sep  |                  | Introduction to Signals (Chapter 1):                                                                                                                                                                     |  |
| 2    | Lab 1 (1-Matlab)             | Т   | 9-Sep  |                  | <ol> <li>Transformations: Shifting and Scaling,</li> <li>Types: Periodic vs. Aperiodic; Even vs. odd; Energy vs. Power,</li> <li>Examples: Exponential; Sinusoidal; Ramp; Gate; Impulse; Step</li> </ol> |  |
|      |                              | R   | 11-Sep |                  | CT and DT Systems (Chapter 2):<br>1. System Connections and Properties                                                                                                                                   |  |
| 3    |                              | Т   | 16-Sep | Assignment 1 due | Time Domain Analysis, LTIC Systems (Chapter 3):                                                                                                                                                          |  |
|      | Lab 1 due                    | R   | 18-Sep |                  | <ol> <li>Constant Coefficient Differential Equations</li> <li>Solution of Differential Equation</li> </ol>                                                                                               |  |
| 4    | Lab 2 (2-Audio)              | Т   | 23-Sep |                  | 3. Convolution                                                                                                                                                                                           |  |
|      |                              | R   | 25-Sep | Quiz 1           |                                                                                                                                                                                                          |  |
| 5    |                              | Т   | 30-Sep | No Class         | Rosh Hashanah                                                                                                                                                                                            |  |
|      | Lab 2 due                    | R   | 2-Oct  |                  | Integral Transforms (4.1, 4.2, 4.3, Chapter 6):<br>1. Transformation of LTICs<br>2. Solution of LTICs using Laplace Transforms<br>3. Transfer functions from Constant Coefficient Differential Equations |  |
| 6    | Lab 3 (3-B 5 <sup>th</sup> ) | Т   | 7-Oct  |                  | 4. Convolution Property, Multiplication Property                                                                                                                                                         |  |
|      |                              | R   | 9-Oct  | No Class         | (Yom Kippur)                                                                                                                                                                                             |  |
| 7    |                              | Т   | 14-Oct |                  | Fourier Transform - CT Systems (Chapter 4, 5):<br>1. CT Fourier Transform for CT Periodic Signal<br>2. CT Non-periodic Signals: CT Fourier Transform<br>3. Properties of CT Fourier Transform            |  |
|      | Lab 3 due                    | R   | 16-Oct | Mid-term Test    |                                                                                                                                                                                                          |  |

#### Rough Lecture/Assignment/Quiz Schedule (Cont'd)



| Week | Lab                   | Day | Date   | Assignment/Quiz  | Topic/Exercises                                                                                                                                                                                                                                                                                                                                                                            |  |
|------|-----------------------|-----|--------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 8    | Lab 4 (4-Sound Synth) | Т   | 21-Oct |                  | Design of Frequency Selective Filters                                                                                                                                                                                                                                                                                                                                                      |  |
|      |                       | R   | 23-Oct | Assignment 2 due | (Chapter 7)<br>1. Design of CT (analogue) filters                                                                                                                                                                                                                                                                                                                                          |  |
| 9    |                       | Т   | 28-Oct |                  | 2. Butterworth filters                                                                                                                                                                                                                                                                                                                                                                     |  |
|      | Lab 4 due             | R   | 30-Oct |                  | Sampling and Quantization (Chapter 9)                                                                                                                                                                                                                                                                                                                                                      |  |
| 10   | Lab 5 (6 – Speech)    | Т   | 4-Nov  |                  | <ul> <li>Ime Domain Analysis of DT Systems<br/>(Chapter 10)</li> <li>z Transform for DT Signals and Systems<br/>(Chapter 13)</li> <li>1. z Transform: Definition</li> <li>2. DTFT for DT Periodic Signal</li> <li>3. Properties of DT Fourier Transform</li> <li>4. Convolution Property, Multiplication Property: Circular<br/>Convolution.</li> <li>Digital Signal Processing</li> </ul> |  |
|      |                       | R   | 6-Nov  | Assignment 3 due |                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 11   |                       | Т   | 11-Nov |                  |                                                                                                                                                                                                                                                                                                                                                                                            |  |
|      | Lab 5 due             | R   | 13-Nov |                  |                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 12   | Lab 6 (12 – AM radio) | Т   | 18-Nov |                  |                                                                                                                                                                                                                                                                                                                                                                                            |  |
|      |                       | R   | 20-Nov | Quiz 2           |                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 13   |                       | Т   | 25-Nov |                  | <b>CT and DT Control Systems</b><br>1. Transfer functions from Constant Coefficient Difference Equations                                                                                                                                                                                                                                                                                   |  |
|      | Lab 6 due             | R   | 27-Nov |                  |                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 14   |                       | Т   | 2-Dec  | Assignment 4 due |                                                                                                                                                                                                                                                                                                                                                                                            |  |
|      |                       | R   | 4-Dec  | No Class         |                                                                                                                                                                                                                                                                                                                                                                                            |  |

## **Use of Wiki Pages**



- Course resources available online through the department's Wiki pages
- <u>http://wiki.cse.yorku.ca</u> may have to follow Course Archive Link
- You can check site to
  - Review lecture material
  - Check schedule, due dates, marks
  - Submit assignments, labs setting up a drop box for paper submissions as well
  - Ask course-related questions via the forum

## Intro to Signals (Chapter 1)

- Typically we are talking about:
  - Time-varying continuously (CT) OR sampled (DT)
  - Electrical (voltage/current) output...
    - ...from a transducer which is monitoring some ongoing process (sending analog information), OR
    - ...from a processor or ADC which is sending digital information
  - Main idea is that there is a "sender" and "receiver" that exchange information via the signal

W1-R



 $T_{s} = 0.25$ 

CSE 3451

### **Signal Examples**

• Sound (pressure) - CT



• Light - DT









## **Analog vs. Digital Signals**

 CT and DT classification is a mathematical one

 $x(t) = \sin(0.25\pi t)$ 

 $x[k] = \sin(0.25\pi k)$ 

 Analog/Digital classification is based on hardware and how it operates on signals



### **Periodic vs. Aperiodic**

- Signal (CT, DT) is periodic if  $x(t) = x(t+T_0)$  $x[k] = x[k+K_0]$
- CT, sinusoidal signals are periodic by definition  $x(t) = A \sin(2\pi f t + \theta) = x(t + T_0) = A \sin(2\pi f t + 2\pi f T_0 + \theta)$   $fT_0 = m$  $T_0 = 1/f$  (m = 1)
- Sampled sinusoidal signals may NOT be periodic  $x[k] = A \sin(2\pi f T_s k + \theta) = x[k + K_0] = A \sin(2\pi f T_s k + 2\pi f T_s K_0 + \theta)$

$$fT_sK_0 = m$$
$$K_0 = m / fT_s = mT / T_s$$

CSE 3451

To be periodic, the sampling period and sinusoidal frequency (period) MUST be expressible as a rational fraction (n/m).



#### **Example Problems**



(1) CT signal is  $x(t) = \sin(0.25\pi t)$ 

What is period?

- Top plot also shows the sampled DT signal for  $T_s = 1 \text{ s}$
- Is x[k] periodic? If so, what is  $K_0$ ?
- (2) Bottom is the DT sampled signal for  $T_s = 0.75$  s.

Is x[k] periodic? If so, what is  $K_0$ ?



#### Harmonics, Superposition

 Sinusoidal components of a signal which have frequencies (periods) which are integer multiples of some fundamental component

$$g(t) = X_1 \sin(2\pi f_1 t) + X_2 \sin(2\pi f_2 t + \theta)$$
  
$$f_2 = \pm m f_1$$

• The resulting function is periodic if

$$\frac{T_1}{T_2} = \frac{f_2}{f_1} = \frac{m}{n}$$
$$T_0 = nT_1 = mT_2 = 1/f_0$$



#### **Example – Beat Frequency**

• CT signals are:

$$x_1(t) = \sin\left(\frac{2\pi}{3}t\right)$$
$$x_2(t) = \sin\left(0.5\pi t\right)$$

- Signal superpostion
- What is the period of this signal?
- Use trig identities to show  $x_1(t) + x_2(t) = 2\cos\left(\frac{\pi}{12}t\right)\sin\left(\frac{7\pi}{12}t\right)$







### **Beat Frequency (cont'd)**



#### **Energy and Power**

• For an electrical signal, the instantaneous power is

$$P(t) = \frac{v^2(t)}{R} \qquad \qquad P[k] = \frac{v^2[k]}{R}$$

In general, we will define the instantaneous power of a signal, x(t) to be

$$P(t) = x^{2}(t)$$
  $P[k] = x^{2}[k]$ 

• Average power and energy of a signal, *x*(*t*) over some time interval is

$$E(t_1...t_2) = \int_{t_1}^{t_2} x^2(t) dt$$

$$P_{avg}(t_1...t_2) = \frac{E(t_1...t_2)}{t_2 - t_1}$$
W1-R

$$E[k_1...k_2] = \sum_{k_1}^{k_2} x^2[k]$$
$$P_{avg}[k_1...k_2] = \frac{E[k_1...k_2]}{k_2 - k_1}$$

CSE 3451



## Energy, Power – Periodic Signal

 If a signal is periodic, then the average power can be computed by considering only a single period of the signal – Why?

$$E(t_1...t_1 + T_0) = \int_{t_1}^{t_1 + T_0} x^2(t) dt \qquad E[k_1...k_1 + K_0] = \sum_{k_1}^{k_1 + K_0} x^2[k]$$
$$P_{avg} = \frac{E(t_1...t_1 + T_0)}{T_0} \qquad P_{avg}[k_1...k_1 + K_0] = \frac{E[k_1...k_1 + K_0]}{K_0}$$





## **Signal Power Example**

 We measure the power of a 12 MHz radio carrier to be 0 dBm. What is the carrier signal's voltage amplitude as it propagates along a 50 Ω coax cable?

$$dB_m = 10\log\left(\frac{P\ mW}{1\ mW}\right)$$

#### **Assignment 1**

- Chapter 1: Signals
  - Q 1.2 (ii), (iv), (vi) use Matlab to sketch signals
  - Q1.3 (ii), (iv), (v) use Matlab to sketch signals
  - Q1.5 (i), (iv), (vii)
  - Q1.6 (ii), (iii), (vi)
  - Q1.10
  - Q1.31