
Introduction Randomized Algorithm Conclusion

Randomized Dining Philosophers

Presented by Xin Zhang



Introduction Randomized Algorithm Conclusion

Outline

1 Introduction

2 Randomized Algorithm

3 Conclusion



Introduction Randomized Algorithm Conclusion

Introduction

Safety property-mutual exclusion

Semaphore

Monitor and condition

Message passing...

Deadlock free-make progress

When some philosophers are hungry, then there will be at least
philosopher to eat from then on.



Introduction Randomized Algorithm Conclusion

Problem of These Models

More information than necessary

Semaphore needs to know not only your neighbor, but your
neighbor’s neighbor;

Monitor needs to know all processes;

Message monitor needs to know the number of
philosophers, and synchronization

Behavior differently

Philosphers need to pick up forks in different order

Id is needed for each philosopher



Introduction Randomized Algorithm Conclusion

What We really Want

Safety property
Deadlock free



Introduction Randomized Algorithm Conclusion

What We really Want

Safety property
Deadlock free
Liveness property: starvation
free
Truly distributed: no central
memory or central process
Symmetric: identical, no id



Introduction Randomized Algorithm Conclusion

Randomized Dining Philosophers Algorithm

Proposed by Daniel Lehmann
& Michael O. Rabin
Use probabilistic algorithm to
randomly choose which fork to
pick up first
Wait for first fork
Then for second, if can’t, give
up the first one and retry

http://www.cs.huji.ac.il/~lehmann/
http://www.seas.harvard.edu/ourfaculty/profile/Michael_Rabin


Introduction Randomized Algorithm Conclusion

Control Flow

Thinking



Introduction Randomized Algorithm Conclusion

Control Flow

Thinking

Trying



Introduction Randomized Algorithm Conclusion

Control Flow

Thinking

Trying

Left

Right



Introduction Randomized Algorithm Conclusion

Control Flow

Thinking

Trying

Left

Right

Wait

Wait



Introduction Randomized Algorithm Conclusion

Control Flow

Thinking

Trying

Left

Right

Right

Left

Wait

Pick

Wait

Pick



Introduction Randomized Algorithm Conclusion

Control Flow

Thinking

Trying

Left

Right

Right

Left

Wait

Pick

Put down

Wait

Pick

Put down



Introduction Randomized Algorithm Conclusion

Control Flow

Thinking

Trying

Left

Right

Right

Left

Eating
Wait

Pick

Pick

Put down

Wait

Pick

Pick

Put down



Introduction Randomized Algorithm Conclusion

Control Flow

Thinking

Trying

Left

Right

Right

Left

Eating
Wait

Pick

Pick

Put down

Wait

Pick

Pick

Put down

Put down all forks



Introduction Randomized Algorithm Conclusion

Improvement

How about livenenss property?



Introduction Randomized Algorithm Conclusion

Improvement

How about livenenss property?
Add one more variable to
indicate if the neighbor ate or
not when pick the first fork
Alternatively, use “Doorway
Concept” and message
passing between the
philospher and neighbor



Introduction Randomized Algorithm Conclusion

Control Flow-Message Passing:Pk

Thinking



Introduction Randomized Algorithm Conclusion

Control Flow-Message Passing:Pk

Thinking

Pend

Sleep



Introduction Randomized Algorithm Conclusion

Control Flow-Message Passing:Pk

Thinking

Pend Door
I←{P1,P2,...}

Sleep



Introduction Randomized Algorithm Conclusion

Control Flow-Message Passing:Pk

Pi trying?
Yes, O←O∪{Pk}

Thinking

Pend Door
I←{P1,P2,...}

Can
I c

om
e

in
?

Sleep



Introduction Randomized Algorithm Conclusion

Control Flow-Message Passing:Pk

Pi trying?
Yes, O←O∪{Pk}

Thinking

Pend Door I←I−{Pi}
I←{P1,P2,...}

Can
I c

om
e

in
? N

o, C
om

e
In

Sleep



Introduction Randomized Algorithm Conclusion

Control Flow-Message Passing:Pk

Pi trying?
Yes, O←O∪{Pk}

Thinking

Pend Door I←I−{Pi}

Trying

I←{P1,P2,...}
Can

I c
om

e
in

? N
o, C

om
e

In

I=∅

Sleep



Introduction Randomized Algorithm Conclusion

Control Flow-Message Passing:Pk

Pi trying?
Yes, O←O∪{Pk}

Thinking

Pend Door I←I−{Pi}

Trying· · ·

I←{P1,P2,...}
Can

I c
om

e
in

? N
o, C

om
e

In

I=∅

Sleep



Introduction Randomized Algorithm Conclusion

Control Flow-Message Passing:Pk

Pi trying?
Yes, O←O∪{Pk}

Thinking

Pend Door I←I−{Pi}

Trying· · ·

I←{P1,P2,...}
Can

I c
om

e
in

? N
o, C

om
e

In

I=∅

∀
P

i ∈
O

: let
P

i in

O
←
∅

Sleep



Introduction Randomized Algorithm Conclusion

Result

The authors claim with propability 1, this algorithm is
deadlock free

By carefully examining, Nancy Lynch proves after some
philosphers feels hungry and try to grab forks, there is at
least one philospher eats within time 13 and probability 1

8 .

For the message passing algorithm the probability, that the
philosopher keeps trying more than time c, is at most 1/ec



Introduction Randomized Algorithm Conclusion

Extension

Scheduling TDMA in wireless
sensor networks
Drinking philosophers


	Introduction
	Randomized Algorithm
	Conclusion

