
Introduction Randomized Algorithm Conclusion

Randomized Dining Philosophers

Presented by Xin Zhang



Introduction Randomized Algorithm Conclusion

Outline

1 Introduction

2 Randomized Algorithm

3 Conclusion



Introduction Randomized Algorithm Conclusion

Introduction

Safety property-mutual exclusion

Semaphore

Monitor and condition

Message passing...

Deadlock free-make progress

When some philosophers are hungry, then there will be at least
philosopher to eat from then on.
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Problem of These Models

More information than necessary

Semaphore needs to know not only your neighbor, but your
neighbor’s neighbor;

Monitor needs to know all processes;

Message monitor needs to know the number of
philosophers, and synchronization

Behavior differently

Philosphers need to pick up forks in different order

Id is needed for each philosopher
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What We really Want

Safety property
Deadlock free
Liveness property: starvation
free
Truly distributed: no central
memory or central process
Symmetric: identical, no id
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Randomized Dining Philosophers Algorithm

Proposed by Daniel Lehmann
& Michael O. Rabin
Use probabilistic algorithm to
randomly choose which fork to
pick up first
Wait for first fork
Then for second, if can’t, give
up the first one and retry

http://www.cs.huji.ac.il/~lehmann/
http://www.seas.harvard.edu/ourfaculty/profile/Michael_Rabin
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Improvement

How about livenenss property?
Add one more variable to
indicate if the neighbor ate or
not when pick the first fork
Alternatively, use “Doorway
Concept” and message
passing between the
philospher and neighbor
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Result

The authors claim with propability 1, this algorithm is
deadlock free

By carefully examining, Nancy Lynch proves after some
philosphers feels hungry and try to grab forks, there is at
least one philospher eats within time 13 and probability 1

8 .

For the message passing algorithm the probability, that the
philosopher keeps trying more than time c, is at most 1/ec
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Extension

Scheduling TDMA in wireless
sensor networks
Drinking philosophers
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