Concurrent K-Means
Algorithm

Implementation

COSC 6490A
Miroslaw Kuc
York University Apr. 23, 2009

K-IMleans Algenthm

Project:

Implement single-threaded and 2 methods for “parallelization”
1) Single Threaded Version

2) Distributed Memory Approach

5) Shared Memory Approach

York University Apr. 23, 2009

K-IMleans Algenthm

Randomly assign cluster centers (e.g. select random points
fliom within the dataset)

Eor each point calculate the distance to the cluster centers
and assign the point to the closest “cluster”.

Based on the membership calculated in step (2) calculate
the center of the new clusters.

Repeat steps (2) and (3) until stopping criteria are met (e.g.
no point change cluster membership).

MacQueen, 1967 [1]

York University Apr. 23, 2009

k-means Algenthm

Initial Setup lteration 1 T tteration 2

teration 3 fteration 4 - Final

Brute Force: 549,755,813,800 = 5.5*1011 possible 2-cluster arrangements

York University Apr. 23, 2009

Data Structures

DataPoint

shlembership : int

calcDistanceTod : double

York University Apr. 23, 2009

Data Structures

Fointvector

York University Apr. 23, 2009

Data Structures

Thread

kheans_paral kKheans_paral_thread

York University Apr. 23, 2009

‘Distributed” Model Approach

Exploit the “data” parallelism:
Subdivide the data into equal “chunks”: copies points references to a
local Vector (etherwise, whole Vector locked)
Copy cluster centers to a local Vector

Code very S|m|Iar to the smgle -threaded version

oint find the nearest cluster center

for {int iPt = 0; iPt « dataPoints.size(): 1Pr++} {

int newCluster = -1;
donuble newMinDistance = 10E38;
DataPoint point = (DataPoint) dataPoints.elementidt (1PLC) !

for (int iCtr=0; iCtr <« clusterCenters.zize () iCtr++) {
Point center = (Point) clusterCenters.elementiht (iCtr) !
douoble dist = puint.cachistanceTuﬁcenfer}
if (di=st < newMinDistance) { // closer ce ound
newCluster = iCtr;
newMinDistance = dist;

/ as=zign the new cluster center, if it has changecd
if (point.getClusterMemberzhip() !'= newClu=ster) {
point.=setClusterMembership (newlCluster) ;

changedMembership[modThread] = truoe;

York University Apr. 23, 2009

PData Lecking

P(mutex_locked);

If ('locked and !processed) {
locked = true;
P(mutex_membership);
V(mutex_locked);

I/ calculate cluster membership

P(mutex_locked);
V(mutex_membership);
processed = true;

}

V(mutex_locked);

However, data storage and processing are in different objects.

York University Apr. 23, 2009 9

PData Lecking

'/ get a lock on the point

public long acguireLock() {
long datalLock = 0;
try {
matex locked.acquire();
if ('locked && 'processed) {

fgive the lock o
locked = true;
matex locked.release():
while (dataLock == Q) { // do
datalock = rand.nextLong();
H
this.randDatalock = datalock;
mutex membership.acquire(): //lock up the membership calculation
¥} else {
matex locked.release():
H
retorn dataLock:
} catch (InterruptedException e) {
System.ocut.println("SafePoint.aguirelock(): " + e.getMessage()):

retorn 0;

Point can only be locked for processing once (flag reset between iterations)
Lock exclusivity accomplished though a randomized “key”.

York University Apr. 23, 2009 10

PData Lecking

£ the lock on the point
public boolean releaselock(long datalLock) {
boolean lock released = false;
try {
mutex locked.acguire():
if (randDatalock !'= 0 && this.randDataLock == datalLock) {
if {locked) { // T
locked = false;
processed = true;
lock released = true;
randDatalock = 0O;
mutex membership.release():

H
mutex locked.release();
return lock released;
} catch (InterruptedException e) {
Syztem.out.println("SafePoint.rele: " + e.getMessage ()}

Y
return fal=se;

“mutex_membership” forces waiting for the result.
“key” required to release the lock.

York University Apr. 23, 2009 11

PData Lecking

public boolean setClusterMembership(long datalLock, int newValue) {
boolean wvalueSet = false;

try {
mutex locked.acguire():
if (randDatalock !'= 0 && this.randDatalLock == datalLock) {
if ({locked) { /. 1low jes to the clu
point.setClusterMembership (newValue) ;

wvalueSet = true;

H
matex locked.release();
retorn valueSet;

} catch (InterruptedException e) {
Syvatem.out.println("SafePoint.zetClusterMembership(): " 4+ e.getMessage()):
retorn false;

“key” required to change value.

York University Apr. 23, 2009 12

“Shared” VMiemory Approach

Multiple threads are potentially accessing the same data points;
therefere, need to leck points while calculating cluster centers.

for (Iterator iPt = dataPoints.iterator(): iPt.hasMext():) {

SafePoint point = (SafePoint) iPt.next():

long datalLock = point.acquirelLock():;
if (datalLock '= 0) {

int newCluster = -1;

donble newMinDistance = 10E38;

iCtr++) {

iCtr < gclusterCenters.=sizel():
(Point) clusterCenters.elementht (iCtr):;

for (int iCtr=0:
Foint center =
donble dist = point.calcDistanceTo(center):;
if (dist < newMinDistance) { // closer center found
newCluster = iCtr;

newMinDistance = dist;

center, if it has

I= newClusater) {

=]

ff assign the new cluster

if (point.getClusterMembership()
point.setClusterMembership (datalock, newCluster);
safeChangedMembership.write (troe) ;

}
point.releaselock(datalLock) ;

York University Apr. 23, 2009

Results

Processing time with respect to single-threaded version

m Distributed
@ Shared

threads

There Is a let of variability in precessing time; but, the ratio of
processing times Is relatively constant.
(on dual core processor)

York University Apr. 23, 2009

14

Results

Processing time with respect to single-threaded version (2 threads)

@ Distributed
m Shared

As the amoeunt of parallelized work increases the ratio of the “locking
overhead” to the work done decreases.
(on dual core processor)

York University Apr. 23, 2009 15

Conclusions

Important to determine If the problem size justifies concurrent
Implementation.

Match the number of threads to the number of cores.

Do not use locks where It IS net necessary (pretty high cost).
For example, I parts of the code are intended to be run
Single-threaded, adapt the data structures for such.

York University Apr. 23, 2009

16

Eutlre developments

Increase the amount of werk done in parallel (currently only
the cluster assignment IS done. in parallel; can also put parts
off the recalculation ofi new: cluster centers).

Check other preblem characteristics and how they affect the
processing time w.r.t. single-threaded version (e.g. total
AUmMbeEr of points, number of clusters, cluster shape, etc.).

Compare approach/results to other research.

York University Apr. 23, 2009

17

References

[1] MacQueen, J. Some metheds ofi classification and
analysis ofi multivariate observations, Proceedings of the
fifth Berkeley symposium on mathematical statistic and
probability (Vol. 1, pp. 281-297) Berkeley: University of
Califernia Press.

York University Apr. 23, 2009 18

- -

T~ \ -
[nank Youl

= . P L '/' C
7 - / (a

- - -
- C Qestio S?
P

I

-«

s

York University Apr. 23, 2009

=4

~—

~ -

2
\'
, >
= -
~__

-«

4

N

> -

, York University Apr. 23, 2009

	Concurrent K-Means Algorithm��Implementation
	K-Means Algorithm
	K-Means Algorithm
	k-means Algorithm
	Data Structures
	Data Structures
	Data Structures
	“Distributed” Model Approach
	Data Locking
	Data Locking
	Data Locking
	Data Locking
	“Shared” Memory Approach
	Results
	Results
	Conclusions
	Future developments
	References
	Thank You!

