
Concurrent Red-Black Trees

Franck van Breugel

York University, Toronto

May 12, 2009

Franck van Breugel Concurrent Red-Black Trees

Red-Black Tree

A red-black tree is a binary search tree the nodes of which are
coloured either red or black and

the root is black,
every leaf is black,
if a node is red, then both its children are black,
for every node, every path from that node to a leaf contains
the same number of black nodes.

[Bayer, 1972] and [Guibas and Sedgewick, 1978]

3

1

Franck van Breugel Concurrent Red-Black Trees

Three Implementations

〈〈interface〉〉
Set〈T〉

contains(T) : boolean
add(T) : boolean

RedBlackTree〈T〉

Franck van Breugel Concurrent Red-Black Trees

The Monitor Solution

1 package moni tor ;
2

3 public class RedBlackTree<T extends Comparable<T>>

4 implements Set<T>

5 {
6 public synchronized boolean conta ins (T element)
7 {
8 . . .
9 }

10

11 public synchronized boolean add (T element)
12 {
13 . . .
14 }
15 }

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

1 private ReadWriteLock lock ;
2

3 public RedBlackTree ()
4 {
5 th is . l ock = new ReentrantReadWriteLock () ;
6 . . .
7 }
8

9 public boolean conta ins (T element)
10 {
11 th is . l ock . getReadLock () . lock () ;
12 . . .
13 th is . l ock . getReadLock () . unlock () ;
14 }
15 . . .

Franck van Breugel Concurrent Red-Black Trees

The Locks Solution

Processes lock the nodes of the red-black tree in three different
ways:

ρ-lock: lock to read

α-lock: lock to exclude writers

ξ-lock: exclusive lock

Although a node can be locked by multiple processes, there are
some restrictions.

ρ α

ξ

Franck van Breugel Concurrent Red-Black Trees

Properties

some synchronization is needed

deadlock freedom

no uncaught exceptions

no data races

post-conditions

Franck van Breugel Concurrent Red-Black Trees

Some Synchronization is Needed

� �

1 add (3) ;
2 add (1) ;
3 (add (2) | | asser t (con ta ins (1)))

� �

Franck van Breugel Concurrent Red-Black Trees

Some Synchronization is Needed

JPF found an interleaving leading to an uncaught exception

===
gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty
java.lang.NoClassDefFoundError: RedBlackTree

at Main.main(Starter.java:11)

===
elapsed time: 0:00:00
states: new=0, visited=1, backtracked=0
search: maxDepth=0, constraints=0
choice generators: thread=1, data=0
heap: gc=0, new=205, free=0
instructions: 2079
max memory: 16MB
loaded code: classes=56, methods=763

Franck van Breugel Concurrent Red-Black Trees

Deadlocks, Exceptions and Data Races

Numerous small tests were verified by JPF for the three
implementations:

no deadlocks,

no uncaught exceptions,

no data races.

Franck van Breugel Concurrent Red-Black Trees

Post-Conditions

Added to the implementations:

isOk(): tests whether the tree is a red-black tree

elements(): returns the collections of elements of the tree

Franck van Breugel Concurrent Red-Black Trees

Post-Conditions

� �

1 (t r ee . add (1) ‖ t r ee . add (2)) ;
2 asser t t ree . isOk () ;
3 asser t t ree . elements () . con ta ins (1) ;
4 asser t t ree . elements () . con ta ins (2) ;

� �

Franck van Breugel Concurrent Red-Black Trees

State Spaces

� �

1 add (1) ‖ · · · ‖ add (n)
� �

Franck van Breugel Concurrent Red-Black Trees

State Space

0

1

2

3

4

1 2 3

monitor
readers-writers
locks

Franck van Breugel Concurrent Red-Black Trees

Conclusion

Three algorithms
the monitor solution

simplest implementation
smallest state space

the readers-writers solution
most efficient implementation
largest state space

the locks solution
most complicated implementation
most inefficient implementation

Franck van Breugel Concurrent Red-Black Trees

And the winner is ...

???

Franck van Breugel Concurrent Red-Black Trees

