
JPF test of concurrent JPF test of concurrent
linear hashinglinear hashing

HuxiaHuxia ShiShi
CSE, York UniversityCSE, York University

May19, 2009May19, 2009

Linear Hashing ReviewLinear Hashing Review
A technique of dynamic hashingA technique of dynamic hashing
Data structureData structure

Root variables: next and levelRoot variables: next and level
Sequence of bucket chainsSequence of bucket chains

OperationsOperations
Find, Insert, Delete, Split, MergeFind, Insert, Delete, Split, Merge

15

0 1 2 … N-1 N N+1

…
2016

24

26

30

38

17 13

SolutionsSolutions

Concurrent solutionConcurrent solution
Carla Carla SchlatterSchlatter Ellis. Concurrency in linear Ellis. Concurrency in linear
hashing. ACM Transactions on Database hashing. ACM Transactions on Database
Systems, 12(2): 195Systems, 12(2): 195--217, June 1987217, June 1987

Sequential solutionSequential solution

Concurrent SolutionConcurrent Solution

Three lock typesThree lock types
Read LockRead Lock
Selective LockSelective Lock
Exclusive LockExclusive Lock

15

0 1 2 … N-1 N N+1

…
2016

24

26

30

38

17 13next

level

Concurrent SolutionConcurrent Solution

Concurrent SolutionConcurrent Solution

LockLock--coupling protocolscoupling protocols
add lock on first element, then next elementadd lock on first element, then next element
release lock on first element, then next elementrelease lock on first element, then next element

Local level techniqueLocal level technique
A duplicated local level at bucket chainA duplicated local level at bucket chain
Allow concurrent access to root variables Allow concurrent access to root variables
((find, insert, deletefind, insert, delete, , splitsplit))

Concurrent ImplementationConcurrent Implementation

Sequential SolutionSequential Solution

All operations are serializedAll operations are serialized

public public synchronizedsynchronized booleanboolean find(intfind(int key) { key) { …… }}

public public synchronizedsynchronized void void insert(intinsert(int key) { key) { …… }}

public public synchronizedsynchronized void void delete(intdelete(int key) { key) { …… }}

Test settingTest setting

Bucket size: 2Bucket size: 2
Each thread inserts/deletes/finds 4 Each thread inserts/deletes/finds 4
numbersnumbers
Different types of threads use same dataDifferent types of threads use same data

2 find threads: 02 find threads: 0--3 43 4--77
2 insert threads: 02 insert threads: 0--3 43 4--77
2 delete threads: 02 delete threads: 0--3 43 4--77

Max memory for JPF testMax memory for JPF test
2.5G2.5G

Test PlanTest Plan

Deadlock freedomDeadlock freedom
Data RaceData Race
Check lock number consistencyCheck lock number consistency

(The last item is only verified in concurrent solution)(The last item is only verified in concurrent solution)

Uncaught exceptionUncaught exception

One uncaught exception in concurrent One uncaught exception in concurrent
solutionsolution
Exception:Exception: Array index out of rangeArray index out of range
Root cause:Root cause: run merge on hash map with init root run merge on hash map with init root
variables (level==0 and next==0)variables (level==0 and next==0)
Result:Result: next pointer become next pointer become --1, out of array range1, out of array range
Solution:Solution: Block merge in this caseBlock merge in this case

Deadlock Test Deadlock Test -- Sequential SolutionSequential Solution
Insert
Threads

Delete
Threads

Find
Threads Time States

1 1 0 0:00:02 443
1 0 1 0:00:01 718
0 1 1 0:00:01 27
1 1 1 0:00:14 41688
2 0 0 0:00:06 467
0 2 0 0:00:01 197
0 0 2 0:00:01 469
2 2 0 0:03:12 514939
2 0 2 0:02:13 394213
0 2 2 0:00:30 51966
2 2 2 10:58:20 Out of memory

Deadlock Test Deadlock Test -- Concurrent SolutionConcurrent Solution
Insert
Threads

Delete
Threads

Find
Threads Time States

1 1 0 0:00:42 144096
1 0 1 0:00:18 56910
0 1 1 0:00:08 20571
1 1 1 4:32:58 38550712
2 0 0 0:01:02 202505
0 2 0 0:00:08 21256
0 0 2 0:00:35 115250
2 2 0 4:50:43 38636347
2 0 2 14:33:51 Out of Memory
0 2 2 18:08:37 Out of Memory
2 2 2 19:05:26 Out of Memory

State SpaceState Space

1
10

100
1000

10000
100000

1000000
10000000

100000000

1I/1D 1I/1F 1D/1F 1I/1D/1F 2I/2D

Threads

St
at

es

Sequential Solution Concurrent Solution

State SpaceState Space

0

10000000

20000000

30000000

40000000

50000000

1I/1D 1I/1F 1D/1F 1I/1D/1F 2I/2D

Threads

S
ta

te
s

Sequential Solution Concurrent Solution

Test PlanTest Plan

Deadlock freedomDeadlock freedom
Data RaceData Race
Check lock number consistencyCheck lock number consistency

(The last item is only verified in concurrent solution)(The last item is only verified in concurrent solution)

Data RaceData Race
Sequential SolutionSequential Solution
No data race foundNo data race found

Current SolutionCurrent Solution
Data race is foundData race is found
Root cause:Root cause: Split and find/insert/delete threads access Split and find/insert/delete threads access
root variables root variables levellevel at the same timeat the same time

split: split: this.levelthis.level++++
locate: locate: intint levlev = = this.levelthis.level

Result:Result: locate wrong bucket chainlocate wrong bucket chain
Solution:Solution: Local level technique handles this problemLocal level technique handles this problem

Test PlanTest Plan

Deadlock freedomDeadlock freedom
Data RaceData Race
Check lock number consistencyCheck lock number consistency

(The last item is only verified in concurrent solution)(The last item is only verified in concurrent solution)

Lock number consistencyLock number consistency

After getting read lockAfter getting read lock
assert assert exclusiveLockNumexclusiveLockNum == 0;== 0;

After getting selective lockAfter getting selective lock
assert assert exclusiveLockNumexclusiveLockNum == 0;== 0;
assert assert selectiveLockNumselectiveLockNum == 1;== 1;

After getting exclusive lockAfter getting exclusive lock
assert assert readLockNumreadLockNum == 0;== 0;
assert assert selectiveLockNumselectiveLockNum == 0;== 0;
assert assert exclusiveLockNumexclusiveLockNum == 1;== 1;

Experience with JPFExperience with JPF

The join in main method has strong influence on The join in main method has strong influence on
JPF run timeJPF run time

1I/1D 1I/1F 1D/1F
New states (without

join) 443 718 27

New states (with join) 21472 117844 8286

ConclusionConclusion
Sequential solutionSequential solution

Simple in implementationSimple in implementation
Small state spaceSmall state space
More efficient (only memory operations)More efficient (only memory operations)

Concurrent solutionConcurrent solution
Complicated in implementationComplicated in implementation
Large state spaceLarge state space
Worse efficiency (only memory operations)Worse efficiency (only memory operations)
Better performance with a lot of disk IOBetter performance with a lot of disk IO

EndEnd

Q&AQ&A
ThanksThanks

	JPF test of concurrent linear hashing
	Linear Hashing Review
	Solutions
	Concurrent Solution
	Concurrent Solution
	Concurrent Solution
	Concurrent Implementation
	Sequential Solution
	Test setting
	Test Plan
	Uncaught exception
	Deadlock Test - Sequential Solution
	Deadlock Test - Concurrent Solution
	State Space
	State Space
	Test Plan
	Data Race
	Test Plan
	Lock number consistency
	Experience with JPF
	Conclusion
	End

