JPF test of concurrent
linear hashing

Huxia Shi
CSE, York University
May19, 2009

Linear Hashing Review

e A technique of dynamic hashing

e Data structure
e Root variables: next and level
e Sequence of bucket chains

0 1 2 N-1 N\ N+1
e Operations

e Find, Insert, Delete, Split, Merge

Solutions

e Concurrent solution

e Carla Schlatter Ellis. Concurrency in linear
hashing. ACM Transactions on Database
Systems, 12(2): 195-217, June 1987

e Sequential solution

Concurrent Solution

e Three lock types
e Read Lock
e Selective Lock
e Exclusive Lock

III--III

Concurrent Solution

Existing lock

Lock Request Read lock Selective lock Exclusive lock

Read lock yes yes no
Selective lock ves no no

Exclusive lock no no no

< :

Concurrent Solution

e Lock-coupling protocols

add lock on first element, then next element
release lock on first element, then next element

e Local level technique
A duplicated local level at bucket chain
Allow concurrent access to root variables
(find, insert, delete, split)

Concurrent Implementation

Bucket
=<|ntarfaca=> =ainterfanas> -data
LinearHashTable Sarializable d—l -5iZE
+findl) -next -
+insert() +addData()
+delste(] JAAN +oetData()
+setMext()
+geiNext)
ThreeLockLinearHashTable| ;
Hevel Node BucketChain
-next +chain
-rootLock 1 1 HehainLock Hprimary
-bucketChainList

+iind() a.r
vinser R T

+delete() p— ”
+split() 1 1
+merge)
Lock LacalLevelBucketChain
LreadLockNum Hocallevel
-selectiveLockMum +gell ocalLevel()
exclusivelLockNum +zatlocallevel()

1 requesilock()
Hrnaleaselockl)

+degradelock()

Sequential Solution

e All operations are serialized
public synchronized boolean find(int key) { ... }
public synchronized void insert(int key) { ... }

public synchronized void delete(int key) { ... }

Test setting

e Bucket size: 2

e Each thread inserts/deletes/finds 4
numbers

e Different types of threads use same data

2 find threads: 0-3 4-7
2 insert threads: 0-3 4-7
2 delete threads: 0-3 4-7

e Max memory for JPF test
2.5G

Test Plan

e Deadlock freedom
e Data Race
e Check lock number consistency

(The last itemn Is only verified in concurrent solution)

Uncaught exception

e One uncaught exception in concurrent

solution
Exception: Array index out of range

Root cause: run merge on hash map with init root
variables (level==0 and next==0)

Result: next pointer become -1, out of array range
Solution: Block merge in this case

Deadlock Test - Sequential Solution

Insert Delete Find

Threads Threads Threads Time States
1 1 0 0:00:02 443
1 0 1 0:00:01 718
0 1 1 0:00:01 27
1 1 1 0:00:14 41688
2 0 0 0:00:06 467
0 2 0 0:00:01 197
0 0 2 0:00:01 469
2 2 0 0:03:12 514939
2 0 2 0:02:13 394213
0 2 2 0:00:30 51966
2 2 2 10:58:20

Deadlock Test - Concurrent Solution

Insert Delete Find

Threads Threads Threads Time States
1 1 0 0:00:42 144096
1 0 1 0:00:18 56910
0 1 1 0:00:08 20571
1 1 1 4:32:58 38550712
2 0 0 0:01:02 202505
0 2 0 0:00:08 21256
0 0 2 0:00:35 115250
2 2 0 4:50:43 38636347
2 0) 2 14:33:51
0 2 2 18:08:37
2 2 2 19:05:26

State Space

@ Sequential Solution m Concurrent Solution

100000000
10000000
1000000

100000
10000
1000
100
10
1

11/1D 1I1/1F 1D/1F 11/1D/1F 21/2D

Threads

State Space

@ Sequential Solution m Concurrent Solution

50000000

40000000 -

30000000

20000000

10000000 -

0
11/1D 1I1/1F 1D/1F 11/1D/1F 21/2D

Threads

Test Plan

e Deadlock freedom

® Dala race

R S

e Check lock number consistency

(The last itemn Is only verified in concurrent solution)

Data Race

e Sequential Solution

No data race found

e Current Solution
Data race is found
Root cause: Split and find/insert/delete threads access
root variables |level at the same time
split: this.level++
locate: int lev = this.level
Result: locate wrong bucket chain
Solution: Local level technique handles this problem

(_

Test Plan

e Deadlock freedom
e Data Race
e Check lock nurmber consistency

(The last itemn Is only verified in concurrent solution)

Lock number consistency

e After getting read lock
assert exclusiveLockNum == 0;

e After getting selective lock

assert exclusiveLockNum == 0;
assert selectiveLockNum == 1;

e After getting exclusive lock

assert readLockNum == 0;
assert selectiveLockNum == 0;
assert exclusiveLockNum == 1;

Experience with JPF

e The join In main method has strong influence on
JPF run time

11/1D 1I/1F 1D/1F

New states (without
join) 443 718 27

New states (with join) 21472 | 117844 8286

Conclusion

e Sequential solution
e Simple in implementation
e Small state space
e More efficient (only memory operations)

e Concurrent solution
e Complicated in implementation
e Large state space
e Worse efficiency (only memory operations)
e Better performance with a lot of disk 1O

End

Q&A

Thanks

	JPF test of concurrent linear hashing
	Linear Hashing Review
	Solutions
	Concurrent Solution
	Concurrent Solution
	Concurrent Solution
	Concurrent Implementation
	Sequential Solution
	Test setting
	Test Plan
	Uncaught exception
	Deadlock Test - Sequential Solution
	Deadlock Test - Concurrent Solution
	State Space
	State Space
	Test Plan
	Data Race
	Test Plan
	Lock number consistency
	Experience with JPF
	Conclusion
	End

