

A Priority Queue is a data structure for maintaining a set S of elements, each with
an associated key [CLRS]

Operations:
• INSERT: insert an element into the set
• MIN: peek at the smallest element of the set
• EXTRACT-MIN: remove and return the smallest element in the set
• INCREASE-KEY / DECREASE-KEY: adjust the key value of an element

Applications:
• Job scheduling (max-ordered priority queue)
• Event Simulation (min-ordered priority queue)

A Binary Heap is a data structure that is an array object that can be viewed as a
nearly complete binary tree. The tree is completely filled on all levels except the
lowest, which may only be partially filled. [CLRS]

Heap Order Property: Key stored at the parent is smaller or equal to the key
stored at either child.

Inserts into a Binary Heap are done in a bottom up manner. The new element is
inserted into the next available spot and bubbled up the tree to satisfy the heap
order property.

Deletes from a Binary Heap are done in a top down manner. The min element is
removed and replaced with the most recently inserted element. Then the
element is bubbled down the tree to maintain the heap order property.

The problem that arises from preparing a Binary Heap for concurrent access is
the fact the insert and delete operations work in opposite directions, this could
face potential deadlocks if the tree was locked on a node by node basis.

The solution to this problem, as presented by Nageshwara and Kumar, is to
modify the insert operation so that it too proceeds in a top down manner. Thus
having both procedures would progress down the heap in the same direction
and deadlocks would be eliminated.

Top down insert can be done by predicting the path that a node will follow to it’s
destination and then performing swaps as one proceeds down the path. Thus
when the destination node is reach all the necessary swaps will have already
been done in order to maintain the heap order property.

Predicting the path can be done by taking the difference between the index of
the destination node and the index of the first node in the deepest level and then
representing that as a binary number with the number of bits being equal to the
height of the tree.

Reading this binary number from most significant bit to least significant bit and
interpreting 1’s as a right turn and 0’s as a left turn one can identify the unique
path to follow down to the destination node.

Difference = LastElem - FullLevel = 13 – 8 = 5
Height of Heap = 3
Binary Representation with 3 digits = 101
Path from Root: right left right

With the top down insert procedure it now becomes possible to open the heap to
multiple processes and lock it on a node by node basis.

• Insert Processes would lock only one node
• Delete Processes would lock 3 nodes: The parent and the 2 children

The only problem left to address now is how to handle a situation where a delete
process needs a node that another insert process is in the process of inserting.

The solution is to set a status field associated with each node that will be checked
after each iteration on an insert to allow a “fast-forward” and minimize the wait time
for a delete process.

No key is present ABSENT
A delete process is waiting for the key WANTED

An insert is in progress which will ultimately insert a value to
the node

PENDING
A key exists at the node PRESENT
MeaningStatus

Other Considerations:
• Both the LastElement and FullLevel pointers also need to be locked for

adjusting, this will be done by associating them with the root node since
they need to be adjusted only once.

• This implementation assumes the Binary Heap is implemented via an
array where each node can have an index mapped to it.

Sources:
[NK]
R.V. Nageshwara, V. Kumar. Concurrent Access of Priority Queues. IEEE Transactions on Computers,

37(12): 1657-1665, December 1988.
[CLRS]
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,

Second Edition. MIT Press and McGraw-Hill, 2001.
[SGG]
Abraham Silberschatz, Greg Gagne, and Peter B. Galvin. Operating System Concepts, Seventh Edition.

Wiley, 2005

