
Group Mutual

Exclusion (GME)

Algorithms

-- Implementation of the local-spin GME and
the space-efficient FCFS GME

By Carrie Chu April, 2009

Problem review

� A process requests a “session”.

� Processes requesting the same session can be
in CS simultaneously.

� Processes requesting different sessions can not.

� A group mutual exclusion process:
repeat

NCS: sleep(5)
Try section

CS: sleep(5)
Exit section

forever

Two GME algorithms

� Patrick Keane and Mark Moir. A simple local-
spin group mutual exclusion algorithm. In
Proceedings of the 18th annual ACM
Symposium on Principles of Distributed
Computing, pages 23-32, Atlanta, Georgia,
United States, 1999. ACM.

� Srdjan Petrovic. Space-efficient FCFS group
mutual exclusion. Information Processing
Letters, 95(2): 343-350, July 2005.

Program structure

Algorithm 1: local-spin GME(1)

Each process does:

Algorithm 1: local-spin GME(3)
public class LocalSpinGME extends GMEProcess {

private static final Semaphore s_lock = new Semaphore(1);

private static final ArrayList<Thread> s_queue = new ArrayList<Thread>();

private boolean m_wait;

protected void enterSession() {

// Try section

s_lock.acquire();

…

s_lock.release();

while(m_wait) {

sleep(1)

}

…

}

}

Algorithm 2: space-efficient FCFS GME(1)

� Shared variables are owned by each process,

each of which has a single writer (its owner) and

multiple readers.

� It doesn’t use lock, semaphore, compare-and-

swap, compare-and-set atomic mechanisms.

� Think about “bakery algorithm”.

� It satisfies property FCFS.

� Modular composition of two parts: FCFS+ME

Algorithm 2: space-efficient FCFS GME(2)

Each process does:

�The code is sequential with busy wait loops.

Algorithm 2: space-efficient FCFS GME(3)

public class FcfsGME extends GMEProcess {

private int m_turn;

private boolean m_compting;

protected void enterSession() {

fcfs();

mutualExclusion();
…

}

private void fcfs() {

…

while(…) {

sleep(1)

}

…

}

}

Test (1)

� Two ways

�Create threads with fixed session numbers.

�Create threads with randomly assigned

session numbers.

� The test tuned the number of threads,
sessions and iterations to produce
different cases.

Test(2)

s2s1s2s2s1s1Session

nmlkjiProcess

�The test is able to produce the expected

results for both algorithms.

�The test didn’t find cases that violate ME.

Performance comparison (1)

0

500

1000

1500

2000

2500

3000

1 2

Session

E
x
e
c
u

ti
o

n
 t

im
e

Local-spin

FCFS

�When # of session =1, execution time is almost the same. Lock
doesn’t create much overhead.

�When # of session =2, FCFS has more session switch costs.

8 processes, 100 iterations on navy:

Performance comparison (2)

0

1000

2000

3000

4000

5000

6000

7000

8000

p=4 s=3 p=8 s=6 p=12 s=9

p: # of threads; s: # of sessions

E
x
e
c
u

ti
o

n
 t

im
e

Local-spin

FCFS

FCFS /w

100 iterations on navy:

� Local spin algorithm takes less time than FCFS algorithm, even
comparing with FCFS algorithm without FCFS code.

Looking ahead

� Further verify ME property for both algorithms

� Verify FCFS property for the space-efficient

algorithm

� Verify deadlock solution for the space-efficient

algorithm

Questions?

0: t=

23: go to 0

Try section Exit section

FCFS

FCFS

ME

ME

Try section

Exit section

Space efficient FCFS algorithm – code for process i

