
W10-M

CSE 2021 CSE 2021 CSE 2021 CSE 2021

Computer OrganizationComputer OrganizationComputer OrganizationComputer Organization

Hugh Chesser,

CSEB 1012U

W10-M
2

Agenda

Topics:

1. Multiple cycle implementation

Patterson: Section 4.5

Reminder: Quiz #2 – Next Wednesday (November 11)

W10-M
3

Multicycle Implementation

Instruction:

— Execution of each instruction is broken into different steps

— Each step requires 1 clock cycle

— Each instruction takes multiple clock cycles

Functional Unit:

— Can be used more than once in an instruction (but still only once in a clock cycle)

Advantages:

— Functional units can be shared

— ALU and adder is combined

— Single memory is used for instructions and data

W10-M
4

Multicycle Implementation: Abstract Diagram

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut

— One ALU is used for incrementing PC and for arithmetic operations

— Data memory and Instruction memory are combined

— 5 additional registers are added

1. An instruction register (IR) to hold instructions before distributing data to register file or ALU

2. A memory data register (MDR) to hold data before distributing to register file or ALU

3. Registers A and B that hold data before the ALU

4. Register ALUout that hold data computed by ALU

W10-M
5

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3

2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

Multicycle Implementation: Multiplexers added

Because functional units are shared, multiplexers are added to select data between different devices

1. MUX before memory selects either the PC output (fetch instruction) or ALU output (storing data)

2. MUX before “write register” selects write-register number (instruction [15-11] or instruction[20-16])

3. MUX before “write data” selects data from “ALUOut” (R-type instruction) or “MemData” (lw instruction)

4. Upper MUX before ALU selects PC output (increment PC) or “Read data 1” (R-type instruction)

5. Lower MUX before ALU selects “Read data 2”, or “sign extended instruction[15-0]” or shift left sign
extended instruction[15-0], or 4

W10-M
6

Multicycle Implementation: Controls added

Because functional units are shared, multiplexers are added to select data between different devices

1. MUX before memory selects either the PC output (fetch instruction) or ALU output (storing data)

2. MUX before “write register” selects write-register number (instruction [15-11] or instruction[20-16])

Shift
left 2

MemtoReg

IorD MemRead MemWrite

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

ALUOpALUSrcB

RegDst RegWrite

Instruction
[15– 0]

Instruction [5– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

ALU
control

M
u
x

0

1
ALU

result
ALU

ALUSrcA

ZeroA

B

ALUOut

IRWrite

Address

Memory
data

register

W10-M
7

Multicycle Implementation: Control Units added

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25–0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

W10-M
8

Action of 1-bit Control Signals

PC is written if zero o/p of ALU = 1; Source is
determined by PCSource

Operation at PC depends on PCWritePCWriteCond

PC is written; Source is determined by PCSource
Operation at PC depends on PCWriteCond and zero
output of ALU

PCWrite

“WriteData” of the register file comes from MDR“WriteData” of the register file comes from ALUOutMemtoReg

ALUout supplies address to memory (lw/sw)PC supplies address to memory (instruction fetch)IorD

Memory content specified by address is placed on
“Memdata” o/p (lw/any instruction)

NoneMemRead

ALUSrcA

RegWrite

RegDst

IRWrite

MemWrite

Control Input

Register A is the first operand in ALUPC is the first operand in ALU (increment PC)

Data from “WriteData” i/p is written on the register
specified by “WriteRegister” number

None

“WriteRegister” specified by Instruction[15-11] (R-type)“Write Register” specified by Instruction[20-16] (lw)

“MemData” o/p is written on IR (instruction fetch)None

I/p “Write data” is stored at specified address (sw)None

Effect when asserted (1)Effect when Deasserted (0)

W10-M
9

Action of 2-bit Control Signals

The second operand of ALU is sign extended Instruction[15-0]10

Output of ALU (PC + 4) is sent to PC00

Contents of Instruction[25-0], shift left by 2, and concatenated with the MSB 4-
bits of PC is sent to PC (jump instruction)

10

ALU performs an add operation00

ALUOp ALU performs a subtract operation01

PCSource

ALUSrcB

Control
Input

Contents of ALUOut (branch target address = PC + 4 + 4 x offset) is sent to PC01

The second operand of ALU is sign extended, 2-bit left shifted Instruction[15-
0]

11

The second operand of ALU = 401

The second operand of ALU comes from Register B00

The function field of Instruction defines the operation of ALU 10

EffectValue

W10-M
10

Multicycle Implementation: Control Units added

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25–0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

W10-M
11

Shift Left 2?

What two instructions require the “Shift Left 2” block?

W10-M
12

Breaking the Instruction Execution into Clock
Cycles

Execution of each instruction is broken into a series of steps

— Each step is balanced to do almost equal amount of work

— Each step takes one clock cycle

— Each step contains at the most 1 ALU operation, or 1 register file access, or 1 memory access

— Operations listed in 1 step occurs in parallel in 1 clock cycle

— Different steps occur in different clock cycles

— Different steps are:

1. IF: Instruction fetch step

2. ID: Instruction decode and register fetch step

3. EX: Execution, memory address computation, or branch completion step

4. MEM: Memory access of R-type instruction completion step

5. WB: Write back completion step

W10-M
13

Step 1: Instruction Fetch

Fetch instruction from memory and compute the address of next sequential instruction

IR = Memory[PC];

PC = PC + 4;

Operation:

1. Send PC to the memory as address (IorD = 0)

2. Read memory cell defined by PC (MemRead = 1)

3. Copy output of memory (MeMdata) into IR (IRwrite = 1)

4. Increment PC by 4 (ALUSrcA = 0, ALUSrcB = 01, PCSrc = 00)

5. Store (PC + 4) into PC (PCWrite = 1)

W10-M
14

Step 2: Instruction Decode and Register Fetch

Read register rs in register file and store content of rs in register A

Read rt in register file and store content of rt from register file

Compute branch target address

A = Reg[IR[25-21]];

B = Reg[IR[20-16]];

ALUOut = PC + (sign-extend(IR[15-0]) << 2);

Operation:

1. Access register file to write rs in A.

2. Access register file to write rt in B.

3. Compute branch target address and store in ALUOut(ALUSrcA = 0; ALUSrcB = 11)

Remember that ALU must add (ALUOp = 00)

After this step, one of the four actions are possible: Memory reference (lw/sw), R-type, Branch,
or Jump

W10-M
15

Step 3: Execution, Memory address Computation, or
Branch Completion

Memory Reference (sw/lw):
ALUOut = A + sign-extend(IR[15-0])

ALU adds content of A and sign-extend(IR[15-0]) (ALUSrcA = 1, ALUSrcB = 10),
(ALUOp = 00)

R-type (add/sub/or/and):
ALUOut = A op B

ALU performs specified operation on A and B (ALUSrcA = 1, ALUSrcB = 00),

Operation of ALU is determined by the function field code (ALUOp = 10)

Branch (beq):
if (A == B) PC = ALUOut;

ALU does the equal comparison operation on A and B (ALUSrcA = 1, ALUSrcB = 00),

ALU must subtract (ALUOp = 01)

Update PC with ALUOut if A == B (PCWriteCond = 1, PCSource = 01)

Jump (j):
PC = PC[31-28] || (IR[25-0) << 2);

PC gets overwritten by output of jump address MUX (PCSource = 10, PCWrite = 1)

W10-M
16

Step 4: Memory Access or R-type Instruction
Completion

Memory Reference (sw/lw):
MDR = Memory[ALUOut]; (for lw)

or Memory[ALUOut] = B; (for sw)

1. Address from ALUOut is applied at “address” i/p of memory (IorD = 1)

2. For sw, MemWrite = 1. For lw, MemRead = 1.

R-type Instruction (add/sub/or/and):
Reg[IR[15-11]] = ALUOut;

ALUOut is stored into the register specified by IR[15-11] (MemtoReg = 0, RegWrite = 1)

W10-M
17

Step 5: Memory Write Back (Completion)

load (lw):
Reg[IR[20-16]] = MDR;

MDR is stored into the register specified by IR[20-16] (MemtoReg = 1, RegWrite = 1,

RegDst = 0)

