E AENRY BT 8

z,m o BH S

2 < =< & B

HENPY B Y

BECE AEMWV
8368 ®

5?! D xnl!

E:!

e NE ECE

CSE 2021

-
O
-

M
N

c

M

o)

| -
O

| —

D
e

-

o

&

@)
@)

FYLER DN WY

e RS O LD & BN

a

LAE WURKY

o

CSEB

Hugh Chesser

Ll U.ﬂr. .

E .._..IH

Va5

B HESN L8

n

NUBY BB

Agenda

Topics:
1. Multiple cycle implementation - complete

Patterson: Appendix C, D

Execution of each instruction is broken into a series of steps
— Each step is balanced to do amost equal amount of work
— Each step takes one clock cycle
— Each step contains at the most 1 ALU operation, or 1 register file access, or 1 memory access
— Operationslisted in 1 step occursin parallel in 1 clock cycle
— Different steps occur in different clock cycles
— Different steps are:
1. |F: Instruction fetch step
|D: Instruction decode and register fetch step
EX: Execution, memory address computation, or branch completion step
MEM: Memory access of R-type instruction completion step
WB: Write back completion step

a bk wD

£ I\

Op
[5-0]

chzo

Address

Memory
MemData

Write
data

26 .
S| Shift

\nstrmtion [25-0]

\ug

28
left 2

Instruction
[31-26] \'
Instruction l o | Read
[25-21] " | register 1
Instruction || Read Read
[20-16] ' l > register 2 data 1
g Instruction 0 Wn'teRegiSters
M h Read
[15—0]7 Instruction | u register gaig 2
. X .
Instruction [15-11] . Wiite
register data
Instruction 0
0] M
u
X
1
data %6 Sign 32
i ~
register X cxong

Instruction [5— 0]

Shift
left 2

y
w N P O

chgo

xc

PC [31-28]

result

[
address [31-0]

ALUOut

v

B o
xcZ

> Add

Address

Instruction
memory

Instruction

Read

" | register 1

Read
register 2

Read
data 1

Registers p..q

Write
register
Write
data

data 2

Y

S Add Add

ﬂ

e

Zero
DALY 4y

y

Summary of Steps used in different Instructions

IF - Instruction

| R = Menory[PC;

fetch PC = PC + 4;

ID - Instruction A = Reg[I R 25-21]];

decode / B = Reg[| R 20-16]];

Register fetch ALUQut = PC + (sign-extend(lR[15-0])<<2);

Eiy?oe Execution/ | A Uout =A 3 ALUQUt = A + sign- 't';“(aﬁ‘ == B) PC = PC] 31-28] | |
address comp. / extend(1 R 15-0]) PC = ALUQUL : (1 R[25-0) <<2) ;

Branch /Jump

MEM - Memory
Access /
R-type Completion

Reg[| R[15- 11]]
= ALUCut ;

| w.

MDR = Menory[ALUCUL |
or SWw

Menory[ALUQUt] = B

WB - Memory Read
Completion

[w.
Reg[| R[20- 16]] =MVDR;

W10-M

— Recdll that design of single cycle datapath was based on a combinational circuit
— Design of multicycle datapath is more complicated
1. Instructions are executed in a series of steps
2. Each step must occur in a sequence
3. Control of multicycle must specify both the control signals and the next step

— The control of a multicycle datapath is based on a sequential circuit referred to asafinite state

machine

. : : State O
A finite state diagram for a 2-bit counter

Each state specifies a set of outputs @
By default, unspecified outputs are assumed disabled
The number of the arrows identify inputs
State 3 @ @ State 1

State 2

Finite State Machine?

e See Appendix C

* A sequential logic
function which has a state
and inputs - the logic
function determines the

next state and outputs
— Moore machine — outputs

Inputs

Current state

Clock

sl
Mext-state
L function

Finite State Machine Control of Multicycle
Datapath (1)

Start

! '

Instruction fetch/decode and register fetch
(Figure 4.36)

1 l 1 1

Memory access

R-type instructions Branch instruction Jump instruction

Instruction decode/
Register fetch

Instruction fetch

MemRead
ALUSrcA=0
lorD =0

IRWrite ALUSIrcA=0
Start ALUSIcB = 01 ALUSrcB =11
ALUOp =00 ALUOp =00
PCWrite

PCSource = 0Q

v
Memory reference FSM R-type FSM Branch FSM Jump FSM

Fig. D.3.1: Steps 1 and 2: Instruction Fetch and Decode Instructions

Finite State Machine Control
of Multicycle Datapath (3)

inite State M achine for Memon

From state 1
l (Op ="LW') or (Op ='SW')

Memory address computation

ALUSrcA=1
ALUSIrcB = 10
ALUOp =00

MemRead

loD = 1 MemWrite

loD=1

v Write-back step

RegWrite To state O
MemtoReg = 1

RegDst=0

Finite State Machine Control of Multicycle
Datapath (4)

From state 1
(Op = R-type)

Execution

ALUSICA = 1
ALUSICB = 00
ALUOp = 10

Finite State Machine Control of Multicycle
Datapath (5)

From state 1 From state 1
(Op = 'BEQ) (Op=1)
Branch completion Jump completion
8 9
ALUSIrcA=1
ALUSch_= 00 PCWrite

ARSI PCSource = 10
PCWriteCond

PCSource = 01

Instruction decode/

¥ _Instruction fetch register fetch

MemRead = 1

ALUSrcA =0
lorD =0 ALUSIcA =0
Start - IR W rite > ALUSIcB = 11
ALUSrcB =01 ALUOp =00
ALUOp =00
PCWrite =1
CSource = 0 W02 Q/Q_\ =
\ O =% 7% 1
Memory address - 'S\ Branch S @ Jump
com putation \\,\N‘\ of © E xe cution completion v _completion
2 (0P~ 6
ALUSICA = 1 ALUSrcA =1
rcA = ALUSICA =1 ALUSrcB = 00 PCWrite = 1
ALUSrCB_: 10 ALUSTIcB = 00 ALUOp =01 PCSource = 10
ALUOp =00 ALUOp= 10 PCWriteCond =1
PCSource = 01
Q
3 2., >
- $
i 2 g
@ Memory Memory
¥ __access access ¥ ___R-type completion
3 5
MemRead = 1 MemWrite = 1 RRe%{ljit = %
lorD =1 lorD = 1 e

MemtoReg =0

W rite-back step

RegDst=0
RegWrite =1

MemtoReg=1

Finite State Machine
Control of Multicycle Datapath (5)

Control logic

Inputs
A

Outputs <

-

~

A

PCWrite

PCWriteCond

lorD

MemRead

MemWrite

IRWrite

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSTIrcA

RegWrite

RegDst

NS3

NS2

NS1

NSO

o)
O

)

a
| o o] 4] o
o| 2| 2| 2| =
OI OI @) OI OI

Instruction register
opcode field

™
0p]

EEE

State register

—

Control Logic — Truth Table

| ouput | Cumentstaes | Op
Note that control outputs [e+ tated

PCWriteCond state8
depend only on current VermeaT a0+ stios
state (Op column is blank [ww S0

MemtoReg stated
for all output rows) FoSonees oot

ALUOpL stated

ALUORPO state8
Next state depends on T C T X T —

RegWrite stated + state?

RegDst state7

MextStated stated + stateb + state7 + state8 + state8
MextStatel state(

MextState2 stated Op="Tw"]+(0p="3u")
MNextState3 state2 Op="Tw")

MextStated state3
MextStates state2 Op="sw")
MNextStated statel Op = "Rtype")
MextState? stated
MextStated stated {Op="beqg")
MNextStateS statel {Op="Jmp")

.

Jump
address [31-0]

ALUOUL gy

]
Op
[5-0]
A
Instruction [25—0] O L
1 N \left 2
Instruction
0 [31-26] | 5 PC [31-28]
M Instruction »| Read M
u Address [25—-21] " | register 1 _| N
1X Mem Instruction {4 Read Read A X
oy [20— 16] ._r register 2 datal I |
Membata Instruction ° Wn'teRegiSterS result
B M ; Read
[15-0] Instruction | u register gaig 2 H—.- 0
Write i 15-11] | x . M
bl Inrsuycuon [] . Wiite 4 =1 4
egister data |2 !
Instruction 3
[15-0]
» Memory
data
register » ~
Instruction [5— 0]

v

R o
xXcZ

