

Combinational Logic: Design of a 1-bit adder (2)

Step 2: Derive the Boolean expression for each output from the truth table

INPUTS			OUTPUTS	
\mathbf{a}	\mathbf{b}	\mathbf{c} (CarryIn)	CarryOut	Sum
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Sum $=\bar{a} \bar{b} c+\bar{a} b \bar{c}+a \bar{b} \bar{c}+a b c$
Carryout $=\bar{a} b c+a \bar{b} c+a b \bar{c}+a b c$

Combinational Logic: Design of a 1-bit adder (3)

Step 3: Simplify the Boolean expression

$$
\text { Carryout }=\bar{a} b c+a \bar{b} c+a b \bar{c}+a b c=b c+a c+a b
$$

Step 4: Implement the simplified Boolean expression using OR, AND, and NOT gates

Activity: Implement the hardware for the Sum output of the 1-bit adder

Agenda for Today

\square Introduction to Hardware - Logic Design

Patterson: Appendix C

1-bit adder

- Recall the digital circuit of a 1-bit adder
- We will enhance the 1-bit adder to develop a prototype ALU for MIPS

Digital Circuit of a 1-bit adder (CarryOut only)

Schematic of a 1-bit adder

1-bit ALU with AND, OR, and Addition

- The 1-bit adder is supplemented with AND and OR gates
- A multiplexer controls which gate is connected to the output

1-bit ALU with AND, OR, and Addition capability

ALU Control Lines		Result
Carry In	Operation	
$\mathbf{0}$	$\mathbf{0}=(\mathbf{0 0})_{\mathrm{two}}$	AND
$\mathbf{0}$	$\mathbf{1}=(\mathbf{0 1})_{\mathrm{two}}$	OR
$\mathbf{0}$	$\mathbf{2}=(\mathbf{1 0})_{\mathbf{t w o}}$	add

32-bit ALU w/ AND, OR, and ADD

- The 1-bit ALU can be cascaded together to form a 32 bit ALU
- Which operation is performed is controlled by the Operation bus

ALU Control Lines		Result
Carry In	Operation	
$\mathbf{0}$	$\mathbf{0}=(\mathbf{0 0})_{\text {two }}$	AND
$\mathbf{0}$	$\mathbf{1}=(\mathbf{(0 1})_{\text {two }}$	OR
$\mathbf{0}$	$\mathbf{2}=(\mathbf{1 0})_{\mathrm{two}}$	add

- The designed 32-bit ALU is still missing the subtraction, slt (set if less than), and conditional branch operations

1-bit ALU with AND, OR, Addition, and Subtraction

- Recall that subtraction is performed using 2's complement arithmetic
- We calculate the 2's compliment of the sub-operand and add to the first operand

ALU Control Lines			Result
Binvert	Carry In	Operation	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}=(\mathbf{0 0})_{\mathrm{two}}$	AND
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}=(\mathbf{0 1})_{\mathrm{two}}$	OR
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}=(\mathbf{1 0})_{\mathrm{two}}$	add
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}=(\mathbf{1 0})_{\mathrm{two}}$	sub

1-bit ALU with AND, OR, Addition, and Subtraction capability

1-bit ALU with AND, OR, Add, Sub, and SLT (1)

- Since we need to perform one more operation, we increase the number of inputs at the multiplexer by 1 and label the new input as Less
- SLT operation: if $(\mathrm{a}<\mathrm{b})$, set Less to 1 $=>$ if $(a-b)<0$, set Less to 1
- SLT operation can therefore be expressed in terms of a subtraction between the two operands.
- If the result of subtraction is negative, set Less to 1 .
- How do we determine if the result is negative?

1-bit ALU with AND, OR, Add, Sub, and SLT capability

1-bit ALU with AND, OR, Add, Sub, and SLT (2)

- Use the sign bit obtained from the 1-bit ALU at the MSB position to indicate the result of SLT.

1-bit ALU of MSB (bit 31) with AND, OR, Add, Sub, and SLT capability

1-bit ALU with AND, OR, Add, Sub, and SLT (3)

- In fact we also include the overflow circuit within the 1-bit ALU at the MSB

1-bit ALU (4)

32-bit ALU

w/ And, OR, Add, Subtract, and SLT

- The 1-bit ALU's can be cascaded together to form a 32 bit ALU
- Operations are controlled by the Operation bus

ALU Control Lines			Result
Binvert	Carry In	Operation	
0	0	$0=(00)_{\text {two }}$	AND (a•b)
0	0	$1=(01)_{\text {two }}$	OR (a+b)
0	0	2 = (10) ${ }_{\text {two }}$	Add sum(a, b)
1	1	2 = (11) $)_{\text {two }}$	Subtract (a-b)
1	1	3 = $(11)_{\text {two }}$	SLT Set Result0 if ($\mathrm{a}<\mathrm{b}$)

- Note that Binvert is always the same as Carry In
- To test equality between a and b, subtract b from a and check if the result is 0 .

32-bit ALU w/ And, OR, Add, Subtract, SLT, and Equality Test

ALU Control Lines			Result			
Binvert	Carry In	Operation				
0	0	$0=(00)_{\mathrm{two}}$	AND (a•b)			
0	0	$1=(01)_{\mathrm{two}}$	OR (a+b)			
0	0	$2=(10)_{\mathrm{two}}$	Add sum(a,b)			
1	1	$2=(10)_{\mathrm{two}}$	Subtract (a - b)	$	$	SLT
:---:						
1						

32-bit ALU w/ And, OR, Add,

Subtract, SLT, and Equality Test

