
W9-W

CSE 2021
Computer Organization

Hugh Chesser, CSEB
1012U

W9-W
2

Agenda

Topics:

1. Single Cycle Review (Sample Exam/Quiz Q)

2. Multiple cycle implementation

Patterson: Section 4.5

Reminder: Quiz #2 – Next Wednesday (November 11)

W9-W
3

Main Control (4)

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction[5 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

W9-W
4

Activity (Sample Quiz, Exam Q)

We wish to add jr (jump register) to the single cycle datapath from the

previous slide. Add the necessary connections to the single cycle

datapath block diagram to implement the jr instruction. Also, append the

table below to add the necessary control signals needed for the jr

instruction.

101000X0Xbeq

000100X1Xsw

000011110lw

010001001R-format

ALUOp0ALUOp1BranchMemWriteMemReadRegWriteMemtoRegALUSrcRegDstInstruction

W9-W
5

Answer (Part 1):
Modify the datapath as shown

W9-W
6

Answer (Part 2):

… append the table below to add the necessary control signals needed

for the jr instruction.

1

0

0

0

0

JumpReg

100000X0Xjr

101000X0Xbeq

000100X1Xsw

000011110lw

010001001R-format

ALUOp0ALUOp1BranchMemWriteMemReadRegWriteMemtoRegALUSrcRegDstInstruction

W9-W
7

Why single-cycle implementation is not used?

Assuming no delay at adder, sign extension unit, shift left unit, PC, control unit, and MUX:

— Load cycle requires 5 functional units:

instruction fetch, register access, ALU, data memory access, register access

— Store cycle requires 4 functional units:

instruction fetch, register access, ALU, data memory access

— R-type instruction cycle requires 4 functional units:

instruction fetch, register access, ALU, register access

— Path for a branch instruction requires 3 functional units:

instruction fetch, register access, ALU

— Path for a jump instruction requires 1 functional unit:

instruction fetch

Using a clock cycle of equal duration for each instruction is a waste of resources.

W9-W
8

Why Multicycle?

Example: Assume that the operation times for major functional unit in a microprocessor are:

Memory unit ~ 2ns, ALU and adders ~ 2ns, Register file ~ 1ns

Compare the performance of the following instruction mix

Loads: 24%; Stores: 12%; ALU instructions: 44%; Branches: 18%; Jumps: 2%

on the two implementations

Implementation I: All instructions operate in 1 clock cycle

Implementation II: Each instruction is as long as it needs to be.

Memory Access

Memory Access

Register Access

Register Access

Functional units used (Steps involved)

ALURegister AccessInstruction fetchALU type

ALURegister AccessInstruction fetchLoad word

ALURegister AccessInstruction fetchStore word

ALURegister AccessInstruction fetchBranch

Instruction fetchBranch

Instruction Class

Average time per instruction:

2ns

5ns

7ns

8ns

6ns

Memory Access

Memory Access

Register Access

Register Access

Functional units used (Steps involved)

ALURegister AccessInstruction fetchALU type

ALURegister AccessInstruction fetchLoad word

ALURegister AccessInstruction fetchStore word

ALURegister AccessInstruction fetchBranch

Instruction fetchBranch

Instruction Class

Implementation 1: ~ 8ns

Implementation 2: ~0.24(8)+0.12(7)+0.44(6)+0.18(5)+0.02(2) = 6.34ns

W9-W
9

Multicycle Implementation

Instruction:

— Execution of each instruction is broken into different steps

— Each step requires 1 clock cycle

— Each instruction takes multiple clock cycles

Functional Unit:

— Can be used more than once in an instruction (but still only once in a clock cycle)

Advantages:

— Functional units can be shared

— ALU and adder is combined

— Single memory is used for instructions and data

W9-W
10

Multicycle Implementation: Abstract Diagram

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut

— One ALU is used for incrementing PC and for arithmetic operations

— Data memory and Instruction memory are combined

— 5 additional registers are added

1. An instruction register (IR) to hold instructions before distributing data to register file or ALU

2. A memory data register (MDR) to hold data before distributing to register file or ALU

3. Registers A and B that hold data before the ALU

4. Register ALUout that hold data computed by ALU

W9-W
11

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3

2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

Multicycle Implementation: Multiplexers added

Because functional units are shared, multiplexers are added to select data between different devices

1. MUX before memory selects either the PC output (fetch instruction) or ALU output (storing data)

2. MUX before “write register” selects write-register number (instruction [15-11] or instruction[20-16])

3. MUX before “write data” selects data from “ALUOut” (R-type instruction) or “MemData” (lw instruction)

4. Upper MUX before ALU selects PC output (increment PC) or “Read data 1” (R-type instruction)

5. Lower MUX before ALU selects “Read data 2”, or “sign extended instruction[15-0]” or shift left sign
extended instruction[15-0], or 4

W9-W
12

Multicycle Implementation: Controls added

Because functional units are shared, multiplexers are added to select data between different devices

1. MUX before memory selects either the PC output (fetch instruction) or ALU output (storing data)

2. MUX before “write register” selects write-register number (instruction [15-11] or instruction[20-16])

Shift
left 2

MemtoReg

IorD MemRead MemWrite

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

ALUOpALUSrcB

RegDst RegWrite

Instruction
[15– 0]

Instruction [5– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

ALU
control

M
u
x

0

1
ALU

result
ALU

ALUSrcA

ZeroA

B

ALUOut

IRWrite

Address

Memory
data

register

W9-W
13

Multicycle Implementation: Control Units added

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25–0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

W9-W
14

Action of 1-bit Control Signals

PC is written if zero o/p of ALU = 1; Source is
determined by PCSource

Operation at PC depends on PCWritePCWriteCond

PC is written; Source is determined by PCSource
Operation at PC depends on PCWriteCond and zero
output of ALU

PCWrite

“WriteData” of the register file comes from MDR“WriteData” of the register file comes from ALUOutMemtoReg

ALUout supplies address to memory (lw/sw)PC supplies address to memory (instruction fetch)IorD

Memory content specified by address is placed on
“Memdata” o/p (lw/any instruction)

NoneMemRead

ALUSrcA

RegWrite

RegDst

IRWrite

MemWrite

Control Input

Register A is the first operand in ALUPC is the first operand in ALU (increment PC)

Data from “WriteData” i/p is written on the register
specified by “WriteRegister” number

None

“WriteRegister” specified by Instruction[15-11] (R-type)“Write Register” specified by Instruction[20-16] (lw)

“MemData” o/p is written on IR (instruction fetch)None

I/p “Write data” is stored at specified address (sw)None

Effect when asserted (1)Effect when Deasserted (0)

W9-W
15

Action of 2-bit Control Signals

The second operand of ALU is sign extended Instruction[15-0]10

Output of ALU (PC + 4) is sent to PC00

Contents of Instruction[25-0], shift left by 2, and concatenated with the MSB 4-
bits of PC is sent to PC (jump instruction)

10

ALU performs an add operation00

ALUOp ALU performs a subtract operation01

PCSource

ALUSrcB

Control
Input

Contents of ALUOut (branch target address = PC + 4 + 4 x offset) is sent to PC01

The second operand of ALU is sign extended, 2-bit left shifted Instruction[15-
0]

11

The second operand of ALU = 401

The second operand of ALU comes from Register B00

The function field of Instruction defines the operation of ALU 10

EffectValue

