E AENRY BT 8

z,m o BH S

2 < =< & B

HENPY B Y

BECE AEMWV
8368 ®

5?! D xnl!

E:!

e NE ECE

CSE 2021

-
O
-

M
N

c

M

o)

| -
O

| —

D
e

-

o

&

@)
@)

FYLER DN WY

e RS O LD & BN

a

LAE WURKY

o

CSEB

Hugh Chesser

Ll U.ﬂr. .

E .._..IH

Va5

B HESN L8

=

n

NUBY BB

Agenda

Topics:
1. Single Cycle Review (Sample Exam/Quiz Q)
2. Multiple cycle implementation

Patterson: Section 4.5

Main Control (4)

result
Add
> PCSrc
RegDst
“ Branch l]
MemRead
Instruction [31 26] MemioReg
Control ALUOD
Memrite
| ALusrc
RegWhite
Instruction [25 21] Read
PC > ggggss . register 1 Read
Instruction [20 16] .| Read data 1 >
' regster2
Mfggno] L—> 0 Wit Registers dgead 76 >ALU AU Add Read v
> o
Instruction '\lﬁl register a2 M resut ress s]M
remory Instruction [15 10 X - u v
:] "\ - \(.'llvantitie —_— X Data X
"L . memay 0
o Wiite
/\ e
Instruction [15 0] 16 Sign 32 i
N lexterd | Y ALU
control
Instruction [5 G

Activity (Sample Quiz, Exam Q)

We wish to add jr (jump register) to the single cycle datapath from the
previous slide. Add the necessary connections to the single cycle
datapath block diagram to implement the jr instruction. Also, append the
table below to add the necessary control signals needed for the jr
instruction.

R-format 1 0 0 1 0 0 0 1 0
| w 0 1 1 1 1 0 0 0 0
SwW X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

W9-W

Answer (Part 1):
Modify the datapath as shown

Add

= =gz °

JumpReg

Branch
Mem Read
MemtoReg
ALUOp
MemWnte
/| ALUSk
RegWrite

Instruction [31-28]

Inatruction [25—21
Ey— [| Read

address =gl Read
Instruction [20-16] Fead data 1
Inatruction | | register 2
[31-0] , Read
Instruction ; Write data 2
Instruction [15-11] register
memory i

Wit
data Registers

Instruction [15-0] 1‘3 @ 32
A w A

Instruction [5-0]

Answer (Part 2): Ef_E

.. append the table below to add the necessary control signals needed
for the jr instruction.

R-format 1 0 0 1 0 0 0 0 1 0
| w 0 1 1 1 1 0 0 0 0 0
SW X 1 X 0 0 1 0 0 0 0
beq X 0 X 0 0 0 1 0 0 1
jr X 0 X 0 0 0 0 1 0 1

W9-W

Assuming no delay at adder, sign extension unift, Igtfit unit, PC, control unit, and MUX:

— Load cycle requires 5 functional units:
Instruction fetch, register access, ALU, data mgnamcess, register access
— Store cycle requires 4 functional units:
Instruction fetch, register access, ALU, data mgnamcess
— R-type instruction cycle requires 4 functional anit
instruction fetch, register access, ALU, registaress
— Path for a branch instruction requires 3 functiamats:
instruction fetch, register access, ALU
— Path for a jump instruction requires 1 functionaitu
instruction fetch

Using a clock cycle of equal duration for eachrunstion is a waste of resources.

Example:Assume that the operation times for major functiamet in a microprocessor are:
Memory unit ~ 2ns, ALU and adders ~ 2ns, Registerf 1ns
Compare the performance of the following instructnoix
Loads: 24%; Stores: 12%; ALU instructions: 44%;igriaes: 18%; Jumps: 2%
on the two implementations
Implementation I: All instructions operate in 1 ckocycle
Implementation II: Each instruction is as longtasaeds to be.

Instruction Class Functional units used (Steps involved)

ALU type Instruction fetch | Register Accesy ALU Register Access 6ns
Load word Instruction fetch | Register Acces§ ALU | Memory Access | Register Access | 8ns
Store word Instruction fetch | Register Acces§ ALU | Memory Access ms
Branch Instruction fetch | Register Acces§ ALU 5ns
Branch Instruction fetch 2ns

Implementation 1. ~ 8ns

Average time per instruction: _
Implementation 2: ~0.24(8)+0.12(7)+0.44(6)+0.18(BP2(2) = 6.34ns

Multicycle Implementation

Instruction:
— Execution of each instruction is broken into diffiet steps

— Each step requires 1 clock cycle
— Each instruction takes multiple clock cycles

Functional Unit:
— Can be used more than once in an instruction (Bubdsly once in a clock cycle)

Advantages:

=

. Instru_ction
| register | Data
» PC Address d
» A -
_ +—>| Register #
Memory InSthngg% —1 Registers >ALU ALUOUL|[-$
Memory *—>| Register #
—pe | data — » B -
Pata register | Register #

One ALU is used for incrementing PC and for arithmeperations
Data memory and Instruction memory are combined
5 additional registers are added

An instruction register (IR) to hold instructionsfbre distributing data to register file or ALU
A memory data register (MDR) to hold data befoisributing to register file or ALU
Registers A and B that hold data before the ALU

Register ALUout that hold data computed by ALU

[

0 0
M Instruction | > Read M
u Address [25-21] register 1 U
X
Instruction Read Read 1_5 —L> X
1 Memory [20-16] T‘ register 2 datal 1
MemData) 0) Registers ALUOuUt
Instruction M Write Read result
) (15-0]| K instruction | u register gata 2 ’ 0 jump
\é\gt';e Instruction [15-11] 1X Write 4 mp|1 M
register data 2 5
Instruction
[15-0]

Memory
data - 16 . 32
register Sign
extend

Because functional units are shared, multiplexersadded to select data between different devices
MUX before memory selects either the PC outpuc(fetstruction) or ALU output (storing data)
MUX before “write register” selects write-registaumber (instruction [15-11] or instruction[20-16])
MUX before “write data” selects data from “ALUOut” {&pe instruction) or “MemData” (lw instruction)
Upper MUX before ALU selects PC output (increme@f Br “Read data 1” (R-type instruction)

Lower MUX before ALU selects “Read data 2", or ‘sigxtended instruction[15-0]" or shift left sign =
extended instruction[15-0], or 4

A0

—

HXCzo

Address

Memory
MemData

Write
data

Instruction

[25—21]

Instruction
[20—16]

Instruction
[15-0]

Instruction
register

Instruction
[15-0]

A 4

Read
register 1

Read
Read
register 2 data 1

. Registers

Write Read
register data 2

Write
data

l

!

Memory
data
register

Instruction [5— 0]

S

Zero —>

result

—p

ALUOut

Because functional units are shared, multiplexegsadded to select data between different devices

MUX before memory selects either the PC outpuc(fetstruction) or ALU output (storing data)
MUX before “write register” selects write-registemmber (instruction [15-11] or instruction[20-16])

12

.

Jump
address [31-0]

ALUOUL gy

]
Op
[5-0]
A
Instruction [25—0] O L
1 N \left 2
Instruction
0 [31-26] | 5 PC [31-28]
M Instruction »| Read M
u Address [25—-21] " | register 1 _| N
1X Mem Instruction {4 Read Read A X
oy [20— 16] ._r register 2 datal I |
Membata Instruction ° Wn'teRegiSterS result
B M ; Read
[15-0] Instruction | u register gaig 2 H—.- 0
Write i 15-11] | x . M
bl Inrsuycuon [] . Wiite 4 =1 4
egister data |2 !
Instruction 3
[15-0]
» Memory
data
register » ~
Instruction [5— 0]

v

R o
xXcZ

Control Input

Effect when Deasserted (0)

Effect when asserted (1)

lorD

PC supplies address to memory (instruction fetch)

ALUout supplies address to memory (Iw/sw)

Memory content specified by address is placed on

hlemBead None “Memdata” o/p (Iw/any instruction)

MemWrite None I/p “Write data” is stored at specified address (sw)

IRWrite None “MemData” o/p is written on IR (instruction fetch)

RegDst “Write Register” specified by Instruction[20-16] (Iw) “WriteRegister” specified by Instruction[15-11] (R-type)
: Data from “WriteData” i/p is written on the register

REQHITE None specified by “WriteRegister” number

ALUSrcA PC is the first operand in ALU (increment PC) Register A is the first operand in ALU

MemtoReg “WriteData” of the register file comes from ALUOut “WriteData” of the register file comes from MDR

PCWrite SRS Hrsmes i HERiEe e 4=l PC is written; Source is determined by PCSource

output of ALU
PCWriteCond |Operation at PC depends on PCWrite PSS A el el FAHES RSl S

determined by PCSource

14

Action of 2-bit Control Signals

\

00 |ALU performs an add operation
ALUOp 01 |ALU performs a subtract operation
10 | The function field of Instruction defines the operdion of ALU
00 |The second operand of ALU comes from Register B
01 |The second operand of ALU =4
ALUSrcB 10 |The second operand of ALU is sign extended Instruicn[15-0]
11 '(I)']he second operand of ALU is sign extended, 2-befit shifted Instruction[15-
00 |Output of ALU (PC + 4) is sent to PC
PCSource 01 |Contents of ALUOuUt (branch target address = PC + 4 4 x offset) is sent to P¢
10 Cpntents qf Instruction[25-0], shift Ieft' by 2, andconcatenated with the MSB 4}
bits of PC is sent to PC (jump instruction)

W9-W

15

