E AENRY BT 8

z,m o BH S

2 < =< & B

HENPY B Y

BECE AEMWV
8368 ®

5?! D xnl!

E:!

e NE ECE

CSE 2021

-
O
-

M
N

c

M

o)

| -
O

| —

D
e

-

o

&

@)
@)

FYLER DN WY

e RS O LD & BN

a

LAE WURKY

o

CSEB

Hugh Chesser

Ll U.ﬂr. .

E .._..IH

Va5

B HESN L8

=

n

NUBY BB

Activity 6: For a CPU, instructions from a high-level languageclassified in 3 classes

Instruction Class A B C
CPI for the instruction class 1 2 3

Two SW implementations with the following instruati counts are being considered

Instruction counts (in billions)
for each instruction class

A B C
Implementation 1 5 1 1
Implementation 2 10 1 1

Assuming that the clock rate is 500 MHz, calcutate(a) MIPS and (b) execution time
Implementation 1 - (a) 350 mips, (b) 20 seconds.

MIPS Instruction Set |

Topics:
— Arithmetic Instructions

— Registers, Memory, and Addressing
— Load and Save Instructions
— Signed and Unsigned Numbers

1.

Recall that a CPU can only
understand binary machine
language program

Writing binary machine language
program is cumbersome

An intermediate solution is to writ
assembly language program that
can easily be translated (assembl
to binary language programs

In this course we will cover MIPS

ISA used by NEC, Nintendo,
Silicon Graphics, and Sony

MIPS is more primitive than highe
level languages with a very
restrictive set of instructions

Wsﬁ

nwn
swap (intvI], int k)
{int tem p ;
temp = v[k];
vik] = v[k+1];
vik+1] = tem p;
}
swap
muli $2, $5,4
add $2,%$4,%2
lw $15, 0(%2)
lw $16, 4(%$2)
s w $16, 0(%$2)
sw $15, 4(%$2)
jir $31
00000000101000010000000000011000
000000001000111000011200000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Fetch and Execute

1. Instructions are stored in the form of bits
2. Programs are stored in memory and are read tdewjust like data

memory for data, programs,

compilers, editors, etc.
Processof mmmmp | Memory /

Category | Instruction Example Meaning Comments
add add $s1, $s2, $s3 | $s1 «— $s2+$s3 | overflow detect
Arithmetic
subtract sub $s1, $s2, $s3 | $s1 «— $s2- $s3 | overflow detect
Tl Ss0 | Ss1 | Ss2 | Ss3 | Ss4 | Ss5 | Ss6 | Ss7
C: f=@+h)—-(0+)); $s0 - Ss7 g | h | i | j
MIPS Code:
Step 1: Specify registers
containing variables $t0 | St1 | $t2 | St3 | St4 | St5 | St6 | St7 | St8 | St9
Step 2: Express instruction |
MIPS code:
add $t0,$s1,$s2 # $t0 — $s1 + $s2
add $t1,$s3,$s4 # $tl — $s3 + $s4
sub $t2,$t0,$t1 # $t2 — $t0 - $t1

=

1. Memory can be viewed as a large one dimensional
array of cells

2. To access a cell, its address is required i 100
(Addresses are indices to the array)

. 8 10

3. In MIPS, each cell is 1 word (4 bytes) long

4. Each word in a memory has an address, which is a ’ o
multiple of 4 0 !

5. Length of an address is 32 bits, hence Address Data
minimum value of address = 0 Processor Memory
maximum value of address =3{2- 1) | |

6. Data is transferred from memory into registeragis
data transfeinstructions

Category Instruction Example Meaning Comments

Data load word |l w $s1, 100($s2) | $s1 «— nenory[$s2+100] Memory to Register
transfer store word | sw $s1, 100($s2) | nenory[$s2+100] «— $s1 Register to memory

Data Transfer Instructions m%wﬁ

load word | Iw $51,100($s2) | $s1 < memory[$s2+100] aleg';fg w0

Data transfer

store word | sw $51,100(Ss2) | memory[$s2+100]< $s2 | Register to memory
Example:C instruction: g = h + A[K]
Register Allocation:

$s1 contains computed value of g; $s2 containsevadun

_ ALK] Address + 4xk 100
$s3 contains base address of array (address of A[O] "
$s4 contains value of k;
MIPS Code: Al1] address + 4 101
add $t1,$s4,$s4 #$t1 =2 x K AL address !
add $t1,$t1,$t1 #$t1=4xk ATEY pata
add $t1,$t1,$s3 # $t1 = address of A[0] + 4 x k
lw $t0,0($t1) # $t0 = A[K]
add $s1,$s2,$t0 # $s3 = h + A[K]

W2-W

MIPS
— loading words but addressing bytes
— addition and subtraction operations on registalg o

Instructions Meaning
add $s1,%$s2,$s3 # $s1 = $s2 + $s3 (arithmetic)
sub $s1,$s2,$s3 # $s1 = $s2 — $s3 (arithmetic)
lw $s1,100($s2) # $s1 = Memory[$s2+100] (data transfer)
sw $s1,100($s2) # Memory[$s2+100] = $s1 (data transfer)

Activity 1: Write the MIPS assembly code for the following Gigement instruction
A[12] = h + A[8]
assuming that the variable h is stored in $s2 hadbase address of the array A is in $s3.

MIPS to Binary Machine Language (1)

Example:add $t0,$s1,$s2

Binary Machine Language Equivalent:
000000 10001 10010 01000 00000 100000

Can we derive the binary machine language code fhenMIPS instruction?

MIPS field for arithmetic instructions:

= w e

Registers are memory cells

In MIPS, data must be in registers before aritisyagerations can be performed
Size of each register is 32 bits, referred ta a®rd (1 word = 4 bytes = 32 bits)
MIPS has a total of 32 registers

Name [Register number Usage
$zero 0 Constant value of 0
$vO0-$vi1 2 -3 Values for results and expression evaluation
$a0-$a3 4 -7 Input arguments to a procedure
$tO-$t7 8-15 Not preserved across procedures (temp)
$s0-$s7 16 - 23 Preserved across procedure calls
$t8-$t9 24 - 25 More temporary registers
$gp 28 Global pointer
$sp 29 Stack pointer, points to last location of stack
$fp 30 Frame pointer
$ra 31 Return address from a procedure call

11

op rs rt rd shamt | funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
i i i . st nd
holallnelicioperation =i opcode 1 2 destination shift function
Opcode (op) =0 operand operand

Function (funct) = 32 for add, 34 for sub
Example:add $t0,$s1,$s2 (Values of Registers$t0 = 9, $s1 = 17, $s2 = 18)

op = Q,= (000000)
rs=17,=(10001)
r=18,=(10010)

rd = 8,= (01000)

shamt is not used = (000Q0)

funct = 32,= (100000)
leads to the binary machine language c@d&000 10001 10010 01000 00000 100000 12

op rs rt address
6 bits 5 bits 5 bits 16 bits
opcode 1stoperand 2" operand Memory address (offset)

For data transfer operations (I):
Opcode (op) = 35 for load (lw) and 43 for save (sw)

Example:w $t0,32($s3) # (Values of Registers: $t0 = 9, $s3 = 19)
op = 35,=(100011)

rs=19,=(10011)

rt = 8,,= (01000)

address = 32 = (0000 0000 0010 0000)

leads to the binary machine language cdde011 10011 01000 0000000000100000

13

Example

Activity 2. Consider the C instruction
A[300] = h + A[300]

A. Write the equivalent MIPS code for the aboven§tnuction assuming $t1 contains the base
address of array A (i.e., address of A[0]) and &u2tains the value of h

