
W2-W

CSE 2021
Computer Organization

Hugh Chesser, CSEB
1012U

W2-W
2

From Last time…

Activity 6: For a CPU, instructions from a high-level language are classified in 3 classes

Two SW implementations with the following instruction counts are being considered

Assuming that the clock rate is 500 MHz, calculate the (a) MIPS and (b) execution time

Implementation 1 - (a) 350 mips, (b) 20 seconds.

321CPI for the instruction class

CBAInstruction Class

Instruction counts (in billions)
for each instruction class

CBA

1110Implementation 2

115Implementation 1

W2-W
3

MIPS Instruction Set I

Topics:
– Arithmetic Instructions

– Registers, Memory, and Addressing

– Load and Save Instructions

– Signed and Unsigned Numbers

– Logical Operations

– Instructions for making decisions (Branch Instructions)

• Patterson: Sections 2.1 – 2.7.

W2-W
4

Levels of Programming

1. Recall that a CPU can only
understand binary machine
language program

2. Writing binary machine language
program is cumbersome

3. An intermediate solution is to write
assembly language program that
can easily be translated (assembled)
to binary language programs

4. In this course we will cover MIPS
ISA used by NEC, Nintendo,
Silicon Graphics, and Sony

5. MIPS is more primitive than higher
level languages with a very
restrictive set of instructions

s w a p (i n t v [] , i n t k) �
{ i n t t e m p ; �
 t e m p = v [k] ; �
 v [k] = v [k + 1] ; �
 v [k + 1] = t e m p ; �
}

s w a p : �
 m u l i $ 2 , $ 5 , 4 �

 a d d $ 2 , $ 4 , $ 2 �

 l w $ 1 5 , 0 ($ 2) �
 l w $ 1 6 , 4 ($ 2) �
 s w $ 1 6 , 0 ($ 2) �
 s w $ 1 5 , 4 ($ 2) �
 j r $ 3 1

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 �

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 �

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �

1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 �

1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �

1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 �

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

B i n a r y m a c h i n e �

l a n g u a g e �

p r o g r a m �

(f o r M I P S)

C c o m p i l e r

A s s e m b l e r

A s s e m b l y �
l a n g u a g e �

p r o g r a m �

(f o r M I P S)

H i g h - l e v e l �
l a n g u a g e �

p r o g r a m �

(i n C)

W2-W
5

Fetch and Execute

1. Instructions are stored in the form of bits

2. Programs are stored in memory and are read or written just like data

3. Fetch & Execute Cycle

— Instructions are fetched and put into a special register

— Bits in the register "control" the subsequent actions

— Data if required is fetched from the memory and placed in other registers

— Fetch the “next” instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

W2-W
6

Addition & Subtraction

Example:

C: f = (g + h) – (i + j);

MIPS Code:

Step 1: Specify registers
containing variables

Step 2: Express instruction in
MIPS

MIPS code:

overflow detect$s1 ← $s2-$s3sub $s1,$s2,$s3subtract

overflow detect$s1 ← $s2+$s3add $s1,$s2,$s3add
Arithmetic

CommentsMeaningExampleInstructionCategory

jihg$s0 - $s7

$s6 $s7$s5$s4$s3$s2$s1$s0

finali+jg+h$t0 - $t7

$t8$t7$t6 $t9$t5$t4$t3$t2$t1$t0

add $t0,$s1,$s2 # $t0 ← $s1 + $s2

add $t1,$s3,$s4 # $t1 ← $s3 + $s4

sub $t2,$t0,$t1 # $t2 ← $t0 - $t1

W2-W
7

Memory Organization

1. Memory can be viewed as a large one dimensional
array of cells

2. To access a cell, its address is required
(Addresses are indices to the array)

3. In MIPS, each cell is 1 word (4 bytes) long

4. Each word in a memory has an address, which is a
multiple of 4

5. Length of an address is 32 bits, hence
minimum value of address = 0
maximum value of address = (232 – 1)

6. Data is transferred from memory into registers using
data transferinstructions

100

10

101

1

12

8

4

0

DataAddress

MemoryProcessor

Register to memorymemory[$s2+100]← $s1sw $s1,100($s2)store word

Memory to Register$s1 ← memory[$s2+100]lw $s1,100($s2)load wordData

transfer

CommentsMeaningExampleInstructionCategory

W2-W
8

Data Transfer Instructions

Register to memorymemory[$s2+100]← $s2sw $s1,100($s2)store word

Memory to

Register
$s1 ←memory[$s2+100]lw $s1,100($s2)load word

Data transfer

CommentsMeaningExampleInstructionCategory

100

10

101

1

Data

A[k]

…

A[1]

A[0]

Array

address

address + 4

…

Address + 4xk

Example: C instruction: g = h + A[k]

Register Allocation:

$s1 contains computed value of g; $s2 contains value of h

$s3 contains base address of array (address of A[0])

$s4 contains value of k;

MIPS Code:
add $t1,$s4,$s4 # $t1 = 2 x k

add $t1,$t1,$t1 # $t1 = 4 x k

add $t1,$t1,$s3 # $t1 = address of A[0] + 4 x k

lw $t0,0($t1) # $t0 = A[k]

add $s1,$s2,$t0 # $s3 = h + A[k]

W2-W
9

So far we have learned …

MIPS

— loading words but addressing bytes

— addition and subtraction operations on registers only

Instructions Meaning

add $s1,$s2,$s3 # $s1 = $s2 + $s3 (arithmetic)
sub $s1,$s2,$s3 # $s1 = $s2 – $s3 (arithmetic)

lw $s1,100($s2) # $s1 = Memory[$s2+100] (data transfer)

sw $s1,100($s2) # Memory[$s2+100] = $s1 (data transfer)

Activity 1: Write the MIPS assembly code for the following C assignment instruction

A[12] = h + A[8]

assuming that the variable h is stored in $s2 and the base address of the array A is in $s3.

W2-W
10

MIPS to Binary Machine Language (1)

Example:add $t0,$s1,$s2

Binary Machine Language Equivalent:

000000 10001 10010 01000 00000 100000

Can we derive the binary machine language code from the MIPS instruction?

MIPS field for arithmetic instructions:

6 bits5 bits5 bits5 bits5 bits6 bits

functionshiftdestination2nd operand1st operandopcode

functshamtrdrtrsop

W2-W
11

Registers

1. Registers are memory cells

2. In MIPS, data must be in registers before arithmetic operations can be performed

3. Size of each register is 32 bits, referred to as a word (1 word = 4 bytes = 32 bits)

4. MIPS has a total of 32 registers

Name Register number Usage
$zero 0 Constant value of 0
$v0-$v1 2 - 3 Values for results and expression evaluation
$a0-$a3 4 - 7 Input arguments to a procedure
$t0-$t7 8 - 15 Not preserved across procedures (temp)
$s0-$s7 16 - 23 Preserved across procedure calls
$t8-$t9 24 - 25 More temporary registers
$gp 28 Global pointer
$sp 29 Stack pointer, points to last location of stack
$fp 30 Frame pointer
$ra 31 Return address from a procedure call

W2-W
12

Representing MIPS Instructions

For arithmetic operations (R):

— Opcode (op) = 0

— Function (funct) = 32 for add, 34 for sub
Example:add $t0,$s1,$s2 (Values of Registers:$t0 = 9, $s1 = 17, $s2 = 18)

op = 010 = (000000)2

rs = 1710 = (10001)2

rt = 1810 = (10010)2

rd = 810 = (01000)2

shamt is not used = (00000)2

funct = 3210 = (100000)2
leads to the binary machine language code:000000 10001 10010 01000 00000 100000

6 bits5 bits5 bits5 bits5 bits6 bits

functionshiftdestination
2nd

operand

1st

operand
opcode

functshamtrdrtrsop

W2-W
13

MIPS Fields for Data Transfer Operations

For data transfer operations (I):

— Opcode (op) = 35 for load (lw) and 43 for save (sw)

Example:lw $t0,32($s3) # (Values of Registers: $t0 = 9, $s3 = 19)

op = 3510 = (100011)2
rs = 1910 = (10011)2
rt = 810 = (01000)2
address = 3210 = (0000 0000 0010 0000)2

leads to the binary machine language code:100011 10011 01000 0000000000100000

16 bits5 bits5 bits6 bits

Memory address (offset)2nd operand1st operandopcode

addressrtrsop

W2-W
14

Example

Activity 2: Consider the C instruction

A[300] = h + A[300]

A. Write the equivalent MIPS code for the above C instruction assuming $t1 contains the base
address of array A (i.e., address of A[0]) and $s2 contains the value of h

B. Write the binary machine language code for the result in part A.

