Concurrent Red-Black Trees

Franck van Breugel
DisCoVeri Group, York University, Toronto

February 26, 2010

Franck van Breugel Concurrent Red-Black Trees

Red-Black Tree

A red-black tree is a binary search tree the nodes of which are
coloured either red or black and

@ the root is black,
@ every leaf is black,
@ if a node is red, then both its children are black,

@ for every node, every path from that node to a leaf contains
the same number of black nodes.

[Bayer, 1972] and [Guibas and Sedgewick, 1978]

Franck van Breugel Concurrent Red-Black Trees

Three Implementations

({interface))
Set(T)
contains(T) : bool ean

add(T) : bool ean

RedBlackTree(T)

Franck van Breugel Concurrent Red-Black Trees

The Monitor Solution

1 package monitor;
2
s public class RedBlackTree<T extends Comparable<T>>
4 implements Set<T>
5
{
6 public synchronized boolean contains(T element)
7 A
8
o}
10
1 public synchronized boolean add(T element)
12 {
13
14 }
15 }

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

({interface))
ReadWriteLock
readLock() : Lock
writelLock() : Lock
Lock
ReentrantReadWriteLock 2 I ock()
unl ock()

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

private ReadWriteLock lock;

public RedBlackTree ()
{

1
2
3
4
5 this.lock = new ReentrantReadWriteLock();
6
7
8
9

}

public boolean contains(T element)

10 {
1 this.lock.getReadLock (). lock ();

13 this .lock.getReadLock (). unlock ();
14 }

Franck van Breugel Concurrent Red-Black Trees

Locking Nodes

Processes lock the nodes of the red-black tree in three different
ways:

@ p-lock: lock to read

@ a-lock: lock to exclude writers

@ ¢-lock: exclusive lock

Although a node can be locked by multiple processes, there are
some restrictions.

—@
o

Franck van Breugel Concurrent Red-Black Trees

Locking Nodes

O D

~

~

Franck van Breugel Concurrent Red-Black Trees

Locking Nodes

{

public
public
public
public
public
public

© [ee] ~ [} vl » w N =

PR
[S

[N
N

[y
w
——

private
private
private boolean writing;

int
int

void
void
void
void
void
void

public class Node<T>

containers ;
state ;

readLock() { ... }
readUnlock() { ... }
writeLock () { ... }
writeUnock() { ... }
exclusiveLock () { ... }
exclusiveUnlock () { ... }

Franck van Breugel Concurrent Red-Black Trees

Performance Comparison: add only

= monitor

? ? ? » readers-writers

Franck van Breugel Concurrent Red-Black Trees

Performance Comparison: contains only

= monitor

? ? ? » readers-writers

Franck van Breugel Concurrent Red-Black Trees

Performanc(: Comparison: contains and add

2l Bl Bk = monitor
0 2l E 3l K » readers-writers
1 2 3 4 100 . |ocks

Franck van Breugel Concurrent Red-Black Trees

Room for Improvement

@ lock only “half a node”
@ lock granularity

Franck van Breugel Concurrent Red-Black Trees

Looking Ahead

Plan

@ verify some properties, such as deadlock freedom, of all
three concurrent implementations by means of Java
PathFinder

@ show undesirable behaviour of
1 add(3);
2 add(1);
s (add(2) || print(contains(1)))

in case no synchronization is used
Challenges
@ state space explosion
@ native code

Franck van Breugel Concurrent Red-Black Trees

