
MST Construction in O(log log n) Communication
Rounds

Haneen Dabain

Department of Computer Science and Engineering
York University

February 11, 2010

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 1 / 28

Table of contents

1 Introduction
The Problem
The Model

2 Related Work

3 The Algorithm
The General Idea
Notations
Step by Step
Extension to Large Messages

4 Conclusion

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 2 / 28

Introduction The Problem

Table of contents

1 Introduction
The Problem
The Model

2 Related Work

3 The Algorithm
The General Idea
Notations
Step by Step
Extension to Large Messages

4 Conclusion

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 3 / 28

Introduction The Problem

The Problem

The MST can be trivially constructed in a single round of communication, if
messages are not restricted in size : each process sends all its information to
all its neighbors, allowing each node to locally compute the MST.

Note that the previous algorithm requires messages of size O(n log n).

Message size could be limited.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 4 / 28

Introduction The Model

Table of contents

1 Introduction
The Problem
The Model

2 Related Work

3 The Algorithm
The General Idea
Notations
Step by Step
Extension to Large Messages

4 Conclusion

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 5 / 28

Introduction The Model

The Model

A complete weighted undirected graph G = (V ,E , ω) where ω(e) denotes
the weight of edge e ∈ E and |V | = n.

All edge weights are different (w.l.o.g.).

Each node knows all its edges weights.

Each node knows about all the other nodes.

Each message contains at most O(log n) bits.

Each edge has a weight of O(log n) bits.

Each node has a distinct ID of O(log n) bits.

Model is reliable: messages are never lost or corrupted

The synchronous model is used.
Note: The algorithm works in the asynchronous model using the simple
synchronizer

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 6 / 28

Related Work

Related Work

An algorithm by Gallagher, Humbles, and Spira.

Works in phases: for each phase, each cluster will add the Minimum Weight
Outgoing Edge (MWOE) connecting that cluster to a node outside the
cluster.

Requires log n phases.

Can this be achieved in a less number of phases?

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 7 / 28

The Algorithm The General Idea

Table of contents

1 Introduction
The Problem
The Model

2 Related Work

3 The Algorithm
The General Idea
Notations
Step by Step
Extension to Large Messages

4 Conclusion

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 8 / 28

The Algorithm The General Idea

The General Idea

The Main Goal

In the previous algorithm , the minimum cluster size doubled in each phase.
Let βk denotes the minimum cluster size in phase k , then
βk+1 = 2βk

Clusters have to grow faster by merging clusters, such that
βk+1 = βk(βk + 1)

Since βk ≤ n, it follows that k = log(log n) + 1 and the time complexity is
O(log(log n)).

To achieve such a rate, information has to be spread faster.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 9 / 28

The Algorithm The General Idea

The General Idea

Message Size Limitation

To overcome the limitation of message size:

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 10 / 28

The Algorithm Notations

Table of contents

1 Introduction
The Problem
The Model

2 Related Work

3 The Algorithm
The General Idea
Notations
Step by Step
Extension to Large Messages

4 Conclusion

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 11 / 28

The Algorithm Notations

Notations

V0: A special node in the graph, e.g., the node with the smallest ID in the
graph.

l(F): A leader of cluster F , e.g. the node with the smallest ID in the cluster.

g(e): A guardian node assigned to each minimum weight edge e.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 12 / 28

The Algorithm Step by Step

Table of contents

1 Introduction
The Problem
The Model

2 Related Work

3 The Algorithm
The General Idea
Notations
Step by Step
Extension to Large Messages

4 Conclusion

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 13 / 28

The Algorithm Step by Step

Step by Step

Finding the β Lightest Edges

Step 1:
1 Each node computes the minimum-weight edge that connects it to any node

in cluster F other than the own cluster.
2 Each node sends the edge to the leader l(F) of that cluster F .

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 14 / 28

The Algorithm Step by Step

Step by Step

Finding the β Lightest Edges

Step 2:
1 Each leader l(F) of a cluster F computes the lightest edge between F and

every other cluster.
2 Each leader l(F) selects the β lightest outgoing edges and appoint them to its

nodes (guardians).

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 15 / 28

The Algorithm Step by Step

Step by Step

Procedure Cheap Out

Input: Lightest edge e(F , F̀) for every other cluster F̀ .

1 Sort the input edges in increasing order of weight

2 Define β = minimum size of all clusters

3 Choose the first β edges of the sorted list

4 Appoint the node with the i th largest ID as the guardian of the i th edge,
i = 1, ..., β

5 Send a message about the edge to the node it is appointed to.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 16 / 28

The Algorithm Step by Step

Step by Step

Sending Edges to the Special Node

Step 3:
1 Each guardian node g(e) sends the edge assigned to it to a specific node V0.

V0 knows the β lightest outgoing edges of each cluster.

V0 needs to know which edges can be added without creating a cycle.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 17 / 28

The Algorithm Step by Step

Step by Step

Example

Assume we have 12 nodes, and β = 2 (minimum cluster size)

This is the picture V0 has after receiving the β = 2 lightest outgoing edges of
each cluster.

V0 can construct a logical graph.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 18 / 28

The Algorithm Step by Step

Step by Step

Example

V0 can locally merge nodes of the logical graph into clusters.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 19 / 28

The Algorithm Step by Step

Step by Step

Major Issue

Can we add the edge 6?

When all β outgoing edges of a cluster are used up, It is not safe to add any
other edge.

Therefore 6 is rejected.

The remaining edges will be rejected because they create cycles.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 20 / 28

The Algorithm Step by Step

Step by Step

Making the Decision

Step 4:
1 V0 locally performs procedure Const Frags to computes the edges to be added.
2 V0 sends messages to the guardians of all edges that have been added.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 21 / 28

The Algorithm Step by Step

Step by Step

How Does Const Frags Work?

We call a super-cluster a finished cluster if it contains a cluster that used up
all of its β edges.

If an edge is the lightest outgoing edge of one super-cluster that is not
finished, then it is still safe to add it.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 22 / 28

The Algorithm Step by Step

Step by Step

Procedure Const Frags

Input: the β lightest outgoing edges of each cluster

1 Construct the logical graph

2 Sort the input edges in increasing order of weight

3 Go through the list, starting with the lightest edge
If the edge can be added without creating a cycle and is safe to add
Then: add it
Else: drop it

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 23 / 28

The Algorithm Step by Step

Step by Step

Adding Edges

Step 5
1 All nodes, that received a message from V0, broadcast their edge to all other

nodes.

Step 6
1 Each node adds all edges and computes the new clusters.
2 If the number of resulting clusters is greater than one, then the next phase

starts.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 24 / 28

The Algorithm Step by Step

Step by Step

Review of the Algorithm for Node v in Cluster F

Compute the minimum-weight edge e(v , F̀) that connects v to cluster F̀ and
send it to l(F̀) for all clusters F̀ 6= F .

If v = l(F) , Compute the β lightest edge between F and every other cluster.
Perform Cheap Out

If v = g(e) for some edge e: Send e to V0

If v = V0 : Perform Const Frags. Send message to g(e) for each added edge
e

If v received a message from V0 : Broadcast it

Add all received edges and compute the new clusters

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 25 / 28

The Algorithm Extension to Large Messages

Table of contents

1 Introduction
The Problem
The Model

2 Related Work

3 The Algorithm
The General Idea
Notations
Step by Step
Extension to Large Messages

4 Conclusion

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 26 / 28

The Algorithm Extension to Large Messages

Extension to Large Messages

Procedure Cheap Out:

Input: Lightest edge e(F , F̀) for every other cluster F̀ .

Sort the input edges in increasing order of weight

Define β = minimum size of all clusters

Choose the first l · β edges of the sorted list

Appoint the node with the i th largest ID as the guardian of the j th edge if
j mod (l · β) = i .

Send a message about the edge to the node it is appointed to.

Step 3:

Each guardian node g(e) sends all the edge assigned to it to a specific node
V0.

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 27 / 28

Conclusion

Conclusion

This algorithm solves the MST problem in the given model in O(log log n)
rounds.

O(log log n) is a good result , faster than O(log n).

The algorithm sends O(n2. log n) bits, which is optimal.

Questions:
Is there a faster algorithm? Is O(log log n) a lower bound?

Haneen Dabain (York University) Concurrent Object Oriented Languages February 11, 2010 28 / 28

	Introduction
	The Problem
	The Model

	Related Work
	The Algorithm
	The General Idea
	Notations
	Step by Step
	Extension to Large Messages

	Conclusion

