CSE 4214 :: Problem Set 2

1. Let $h[k]=[1,2,3,2,1]$ for $k=[1,2,3,4,5]$, and $h[k]=0$ elsewhere; also let $g[k]=$ $[1,1,1]$ for $k=[1,2,3]$ and $g[k]=0$ elsewhere. Find and sketch the discrete-time convolution $h[k] \star g[k]$.
2. Let x be a Gaussian random variable with mean μ and variance σ^{2}. For some constant z, express the probability that x is greater than z in terms of the complementary error function (erfc).
3. Let $s[k]$ represent a signal, zero everywhere except from $k=1$ to n_{b} inclusive, and let $h[k]$ represent the impulse response of the detection filter. If $h[k]=s\left[n_{b}-k\right]$, show that

$$
[s[k] \star h[k]]_{n_{b}}=\sum_{i=1}^{n_{b}} s[i]^{2} .
$$

4. Let $x(t)$ be a zero-mean random process with power spectral density

$$
S_{x}(j \omega)=\left\{\begin{array}{cl}
1+\omega, & -1 \leq \omega<0 \\
1-\omega, & 0 \leq \omega \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find the variance of the process $x(t)$.
5. Let

$$
s_{0}[k]=\left\{\begin{array}{cl}
1, & 1 \leq k \leq 4 \\
-1, & 5 \leq k \leq 8 \\
0 & \text { elsewhere }
\end{array}\right.
$$

and let $s_{1}[k]=-s_{0}[k]$. Also let the decision threshold $z=0$. Note that $n_{b}=8$. If $h[k]=s_{0}\left[n_{b}-k\right]$, find an expression for the probability of error in terms of erfc.

