CSE 4214 :: Problem Set 3

1. Let

$$
h[k]=\left\{\begin{array}{cl}
k+1, & 0 \leq k \leq 4 \tag{1}\\
0 & \text { otherwise }
\end{array} .\right.
$$

If this is the matched filter, find the optimal $s_{0}[k], s_{1}[k], z$, and the probability of error in terms of N_{0} and erfc.
2. Suppose in polar NRZ, a synchronization error occurs, and the matched filter output is taken at times $k n_{b}-\epsilon$, for some positive $\alpha<n_{b}$. That is,

$$
\begin{equation*}
s_{0}=\left[s_{0}[k] \star h[k]\right]_{n_{b}-\epsilon}, \tag{2}
\end{equation*}
$$

and similarly for s_{1}. Find the probability of error as a function of n_{b} and α.
3. Suppose $s_{0}[k]=\alpha s_{1}[k]$. For constant E_{b}, show that $\operatorname{Pr}($ error $)$ is minimum when $\alpha=-1$.
4. Let $n_{b}=8$. If

$$
s_{0}[k]=\left\{\begin{array}{cl}
\sin \left(2 \pi k / n_{b}\right), & 1 \leq k \leq n_{b} \tag{3}\\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
s_{0}^{*}[k]=\left\{\begin{array}{cl}
\gamma, & 1 \leq k \leq n_{b} \tag{4}\\
0 & \text { otherwise }
\end{array},\right.
$$

and assuming equiprobable input symbols and optimal system design, find γ such that the energy per bit is the same in both modulation schemes.

