CSE 4214 :: Problem Set 3

1. Let

$$h[k] = \begin{cases} k+1, & 0 \le k \le 4\\ 0 & \text{otherwise} \end{cases}$$
(1)

If this is the matched filter, find the optimal $s_0[k]$, $s_1[k]$, z, and the probability of error in terms of N_0 and erfc.

2. Suppose in polar NRZ, a synchronization error occurs, and the matched filter output is taken at times $kn_b - \epsilon$, for some positive $\alpha < n_b$. That is,

$$s_0 = \left[s_0[k] \star h[k]\right]_{n_h - \epsilon},\tag{2}$$

and similarly for s_1 . Find the probability of error as a function of n_b and α .

- 3. Suppose $s_0[k] = \alpha s_1[k]$. For constant E_b , show that $\Pr(\text{error})$ is minimum when $\alpha = -1$.
- 4. Let $n_b = 8$. If

$$s_0[k] = \begin{cases} \sin(2\pi k/n_b), & 1 \le k \le n_b \\ 0 & \text{otherwise} \end{cases}$$
(3)

and

$$s_0^*[k] = \begin{cases} \gamma, & 1 \le k \le n_b \\ 0 & \text{otherwise} \end{cases}, \tag{4}$$

and assuming equiprobable input symbols and optimal system design, find γ such that the energy per bit is the same in both modulation schemes.