CSE 4214 :: Problem Set 6

1. Let \mathbf{H} represent a parity check matrix of a linear block code, where

$$
\mathbf{H}^{T}=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Find the generator matrix G.
2. Given \mathbf{H} from question 1, explain how to correct a single error, and give a complete example (starting with a codeword that contains exactly one error).
3. For a linear block code, show that $d_{\min }=w_{\min }$, where $w_{\min }$ is the minimum Hamming weight of any codeword in the code (excluding the all-zero codeword).
4. Recall the definition of a single-error-correcting Hamming code. Show that for any codeword length n and message length k, a Hamming code exists with those values of n and k if $n=2^{n-k}-1$.

