
Capture Synchronization for Multiple C120 Cameras with Multiple Pointers

Navid Mohaghegh
Dept. of Computer Science and Engineering, York University

navid@cse.yorku.ca

Abstract

USB communication protocol of NaturalPoint
OptiTrack FLEX C120 camera is reverse engineered
and corresponding Linux driver is developed. Multiple
C120s are connected and synced to a real-time Linux
system driving blinking wireless laser pointers. The
result is a low latency real-time system that is capable
of tracking multiple pointers in a large interactive
surface.

1. Introduction

Large interactive surfaces enable novel forms of
computing (e.g. Smartboard1, Microsoft Surface2, etc.).
One of the research problems in this domain is how to
handle user input on large surfacesi. Current solutions
do not scale well beyond displays of approximately one
square meterii. This project realizes a novel form of
interaction device based on wireless pens. These pens
are based on laser diodes, which enables them to be
used both on the display as well as off the display.
This distant pointing is a feature that no other system
can offer. Moreover, detecting the distance of a pen
from the surface enables other forms of novel
interaction. This project involves writing a real-time
Linux driver for a 120 Hz Camera System.
Communication protocol of the camera needs to be
reverse engineered. Moreover, the project also involves
frame accurate synchronization of the cameras to a
computer controlled blinking laser.

2. Milestones

Project Initiation
• Research on different project scenarios

(2009/09/15 - 2009/10/18)
Definition

• Defining scope of the project (2009/10/20 -
2009/10/26)

• Determine deliverable, constraints
(2009/10/26 - 2009/11/02)

1http://www.smarttech.com
2http://www.microsoft.com/surface

Planning
• Brainstorming and project plans

(2009/11/02 - 2009/11/09)
• Contract proposal and detailed work

breakdown (2009/11/09 - 2009/11/13)
Execution

• Obtain Dragon12 and Sequoia boards
(2009/11/16 - 2009/11/23)

• Obtain OptiTrack FLEX C120 camera
(2009/11/16 - 2009/11/23)

• Compile and install Linux on Sequoia
board (2009/11/23 - 2009/11/30)

• Compile and install Xenomai real-time
patch (2009/12/01 - 2009/12/08)

• Reverse engineer the OptiTrack FLEX
C120 camera (2009/12/07 - 2009/12/14)

• Write the device driver for OptiTrack
FLEX C120 camera (2010/01/04 -
2010/01/11)

• Interim Report (2010/01/11)
• Testing the device driver for OptiTrack

FLEX C120 camera (2010/01/11 -
2010/01/18)

• Use Dragon12 to control multiple laser
pointer (2010/01/18 - 2010/02/01)

• Use RF transceivers with Dragon12 to sync
multiple laser pointers (2010/02/01 -
2010/02/15)

• Sync Dragon12 and Sequoia boards
(2010/02/15 - 2010/03/15)

• Final Testings (2010/03/15 - 2010/04/02)
• Project Presentation (2010/04/05)
• Project Final Report (2010/04/30)

3. OptiTrack C120 Camera

NaturalPoint OptiTrack FLEX C1203 Camera
(shown in Figure 1) is one of the cheapest high speed
and pre-processed USB video cameras in the market
capable of tracking multiple bright spots. Below are the
details:

• 120 FPS

3http://www.naturalpoint.com/optitrack/products/flex-c120

http://www.smarttech.com/
http://www.naturalpoint.com/optitrack/products/flex-c120
http://www.microsoft.com/surface

• Resolution: 355 x 288
• Imaging modes: Pre-processed, Greyscale
• Latency: 9ms
• Operating Range: 3cm - 4 meters,

depending on marker size
• Lens: 46 degrees, IR 800nm bandpass

coated
• Lens mount: M12 Lens Holder
• Power: 5 V @ 490 mA, including IR LED

Ring
• Multi-camera synchronization
• IR LED intensity control: IR @ 850 nm, 12

LEDs 45 degree FOV, adjustable
brightness, removable

• Frame Decimation control (transmit every
Nth frame)

• Frame Rate control (4 - 120 FPS)
• Exposure control (electronic)
• Image size windowing
• Numeric LED readout
• Free Baseline SDK
• Dimensions: 1.78"(W) x 2.74"(H) x

(0.75"(D) + 0.53"(D LED))

Figure 1 - NaturalPoint OptiTrack FLEX C120 Camera

4. Obstacles

• Reverse engineering of C120
• Building a hard real-time system
• Syncing multiple laser pointers with

multiple camera
• Make the laser pointers wireless

4.1. Reverse engineering of C120

C120 has three end points:

• Vendor ID is 0x131d and Production ID is
0x126 (Rev=00.00)

• EndPoint1 which has the address of 0x02
(USB bulk out)

• EndPoint2 which has the address of 0x84
(USB bulk in)

• EndPoint3 which has the address of 0x86
(USB bulk in)

 C120 starts sending raw greyscale data as soon as it
receives the first initialization packet. This makes the
protocol analysis extremely hard as most of the USB
packet sniffers try to capture the entire traffic on all the
end points. And obviously with the rate of 120 FPS, the
allocated memory buffers become full very soon. As a
result, some of the packets may not be captured since
packet sniffer simply discards the extra data which is
just arrived to buffer while emptying the buffer to the
disk.

 After examining the protocol many times, it was
observed that EP0x86 is purely used to send out data
packets from the camera. We have modified the packet
sniffer4 to omit all the traffic on EP0x86 during the
initialization phase so that at least we can capture the
useful traffic on the other end points reliably.

4.2. Building a hard real-time system

 Building a hard real-time system
AMCC PowerPC 440EPx5 single board computer
running Linux and Xenomia6 hard-real-time framework
is used to host the driver for C120 camera. Details for
setting up Linux and Xenomia on this board can be
studied on Appendix A.

 Freescale Motorola HCS127 micro controller has
been utilized to deal with any low level timers. Codes
that have been developed for this platform can be
studied on Appendix B.

4.3. Syncing multiple laser pointers with
multiple camera

 There is no guarantee of deterministic latency for
USB bulk transfers as bus will only be utilized after all
the other transactions have been allocated and also re-
transmission can occur at any time due to CRC
mismatch. This makes the synchronization of the
cameras and blinking laser pointers almost impossible.

 Luckily, each camera has a sync signals that allows
multiple cameras to be synced together at the camera
level. Also after studding the C120 USB protocol, it
has been observed that each camera frame has a
counter value (increased linearly from 0 to 0xff which
loops).

 Camera performs the following once it receives the
sync signal from the master camera:

4http://sourceforge.net/projects/usbsnoop
5http://www.appliedmicro.com
6http://www.xenomai.org
7http://gcc-hcs12.com

http://gcc-hcs12.com/
http://www.xenomai.org/
http://www.appliedmicro.com/
http://sourceforge.net/projects/usbsnoop
file:///home/navid/Desktop/

• Opens the shutter
• Exposure delay
• Closes the shutter
• Processes the taken picture to find the bright

spots
• Serializes the coordinates of the bright spots
• Assembles the data in a packet along with the

frame counter
• Sends the packet
• Increases the frame counter (if the value is

0xff, frame counter will be 0x00 again)
• Sleeps and listen for sync signal activation

event

 This is very helpful as a hard-real time system can be
developed to monitor the cameras' sync signal and
blink the laser pointers accordingly. Moreover, frame
counter of the cameras can be used to further sync a
specific frame to a specific laser pointer.

 The following is summary of the events that happens
on the developed hard-real-time system which is
tapping on the sync signal of the master camera (on
sync signal activated):

• Increase the frame counter (this is the clone of
the camera counter)

• if (counter%10 == 1) Blinks only laser 1
• if (counter%10 == 2) Blinks only laser 2
• …

 The following is summary of the events that happens
on the developed driver on the Linux side (on USB
data packet arrival):

• Extract the packet data and frame counter
• Decode the coordinate
• if (counter%10 == 1) Print laser1 coordinate
• if (counter%10 == 2) Print laser2 coordinate
• ...

Please refer to Appendix B and Appendix C for
detailed source codes.

4.4. Make the laser pointers wireless

 Low latency wireless transceivers needed (less than
9 ms of latency). It was decided to use off the shelf RF
transceivers with no error correction capabilities for
proof of concept. Link 315 MHz, 4800 bps transceiver8
was utilized. However more enhanced transceivers (i.e.
XBee Pro 115200 bps with error correction
capabilities9) need to be studied.

8http://www.sparkfun.com/ommerce/product_info.php?
products_id=8947
9http://www.sparkfun.com/commerce/product_info.php?
products_id=8690

5. Decoding a sample raw output of the
camera

 Below is a sample raw output of the camera:

• ...
• 36 00 f7 6b b7 b3 b6 03 36 00 52 6b 00 00

00 0c
• 36 00 f1 6d b7 b3 b6 03 36 00 54 6d 00 00

00 0c
• 36 00 f3 6f b6 b4 b5 03 b7 b3 b6 03 36 00

56 6f 00 00 00 10
• ….

 Each packet consist of the followings:

• As you can see above, each packet starts with
“36 00 ??”

• After the start token, we will have the frame
counter. In above we have: 6b, 6d, 6f as our
frame counters

• After the frame counter we have quadrupole
of a coordinates data. For instance for the
packet with frame counter 6f, we have two
bright spots with the following encoded
coordinate:
◦ b6 b4 b5 03
◦ b7 b3 b6 03

• After the encoded coordinate, we will have 36
00 which indicates the end of packet.

 C120 reports coordinate of X and Y for each bright
spots. Below is an example of decoding a quadrupole:

• Imagine a bright spot with “b6 b4 b5 03” data
• y = 0xb6; //Y coordinate
• x1 = 0xb4; //X coordinate - start
• x2 = 0xb5; // X coordinate - end
• high_bits = 0x03;
• x1 += (((high_bits & 0x01) >> 0) << 8) +

(((high_bits & 0x08) >> 3) << 9);
• x2 += (((high_bits & 0x02) >> 1) << 8) +

(((high_bits & 0x10) >> 4) << 9);
• y += (((high_bits & 0x04) >> 2) << 8) +

(((high_bits & 0x20) >> 5) << 9);

 Please note the length of the bright spot can be
calculated using |x2-x1|

6. Change the camera settings

Please send the followings commands to end point
located at the address 0x02 to change different settings

http://www.sparkfun.com/commerce/product_info.php?products_id=8690
http://www.sparkfun.com/commerce/product_info.php?products_id=8690
http://www.sparkfun.com/ommerce/product_info.php?products_id=8947
http://www.sparkfun.com/ommerce/product_info.php?products_id=8947

of the camera (?? stand for the hex value of the
setting):

• Threshold value of C120 can vary from 1 to
253. Send the following command to change
the value:
◦ 15 ?? 01 00
◦ for instance: 15 fd 01 00 changes the

threshold to 253
◦ please note 0xfd = 253

• Exposure value of C120 can vary from 0 to
399. Send the following commands to change
the value:
◦ 23 40 1c ?? 00 00 //low bits
◦ 23 40 1d ?? 00 00 //high bits
◦ 23 40 00 84 00 00
◦ for instance to changes the exposure to

399 the following commands should be
sent:
▪ 23 40 1c 8f 00 00 //low bits
▪ 23 40 1d 01 00 00 //high bits
▪ 23 40 00 84 00 00
▪ please note 0x018f = 399

• C120 has a hardware feature that can limit the
length of the bright spots.
◦ For instance, C120 can be instructed to

only report the bright spots that has a
minimum length of 399 by sending (0 to
1024 are valid values):
▪ 19 0e 0f 01 8f
▪ please note 0x018f = 399

◦ Or as another example, C120 can be
instructed to only report the bright spots
that has a maximum length of 399 by
sending (0 to 1024 are valid values):
▪ 19 0f 0f 01 8f
▪ please note 0x018f = 399

• To put the camera in greyscale mode the
following commands should be sent:
◦ 14 01
◦ 19 03 0f 00 01
◦ 12

• To put the camera out of greyscale mode the
following commands should be sent:
◦ 14 01
◦ 19 03 0f 00 00
◦ 12

• C120 can be instructed to change the frame
rate to less than 120 FPS. Frame rate of the
camera can be changed using the following
patterns:
◦ 3 to 6 frames: 23 40 00 c8 00 00
◦ 7 to 10 frames: 23 40 00 c0 00 00
◦ 11 to 13 frames: 23 40 00 b8 00 00
◦ 14 to 16 frames: 23 40 00 b0 00 00
◦ 17 to 20 frames: 23 40 00 a8 00 00
◦ 20 to 33 frames: 23 40 00 a0 00 00

◦ 34 to 40 frames: 23 40 00 98 00 00
◦ 41 to 50 frames: 23 40 00 90 00 00
◦ 51 to 66 frames: 23 40 00 88 00 00
◦ 67 to 100 frames: 23 40 00 80 00 00
◦ Please note if you like C120 only send 3

frames per second, you need to use 3 to 6
frames setting. You will receive 6
packets, and you have to drop 3 of them
at software side. And as you can say this
is much better than discarding 117
packets at software side.

• C120 decimation feature can be changed as
well. This means camera can be instructed to
actually send the data packets every Nth
frame. For instance to have the data every 399
frames, once can send the following:
◦ 19 0c 0f 01 8f
◦ please note 0x018f = 399

• Each C120 can have a unique ID. The ID can
be set using:
◦ 19 07 0f 00 ??
◦ for instance to have an ID of 1: 19 07 0f

00 01
• C120 can be instructed to only report the

bright spots that fall into a specific interval of
X and Y
◦ To put a constrain on X values:

▪ 19 08 0f ?? ?? //Xstart

▪ 19 09 0f ?? ?? //Xend

▪ For instance to report only the bright
spots that their X value folds in 0-
399 the following should be sent:
• 19 08 0f 00 00 //Xstart = 0
• 19 09 0f 01 8f //Xend = 399

◦ To put a constrain on Y values:
▪ 19 0a 0f ?? ?? //Ystart

▪ 19 0b 0f ?? ?? //Yend

▪ For instance to report only the bright
spots that their X value folds in 0-
399 the following should be sent:
• 19 0a 0f 00 00 //Ystart = 0
• 19 0b 0f 01 8f //Yend = 399

7. Start and stop C120

Please note you should stop the camera before
sending any new settings. Below commands will start
and stop the camera (need to be sent to the endpoint
located at 0x02):

• Stop the camera:
◦ 14 01
◦ 12
◦ 10 00 20
◦ 10 00 80
◦ 10 00 10

◦ 10 00 40
◦ 13

• Start the camera:
◦ 14 01
◦ 12
◦ 10 00 80
◦ 10 00 20
◦ 13
◦ Perform a read from end point located at

0x84
◦ Perform a read from end point located at

0x84
◦ 17
◦ Perform a read from end point located at

0x84
◦ 1D
◦ Perform a read from end point located at

0x84
◦ 19 14 0f 00 00
◦ 14 01
◦ 12
◦ 15 87 01 00
◦ 14 01
◦ 19 03 0f 00 00
◦ 12
◦ 14 00
◦ 19 07 0f 00 36
◦ 14 00
◦ 12
◦ 10 20 20
◦ 10 80 80

8. Tricks to have longer “on” time for
lasers

We have mentioned that HCS12 micro controller is
used to monitor the sync active signal of the master
camera to drive the lasers according to the frame
counter. The whole idea is to have only one laser active
at a given time that we can identify its location.

If we can keep lasers “on” more often, we will be
able to have less obvious blinking which will visually
improve our feeling from the blinking system.

To achieve this goal, we will decrease the exposure
time of the camera. This enables us to turn on all the
lasers as soon as the exposure period is done. Also we
may reduce the number of lasers that system can track
(i.e. 6 lasers concurrently).

9. Future work

The current system is fully functional and fulfilled
all the requirements. However it will be nice to add a
GUI for calibration of multiple cameras and change the
settings.

Wireless subsystem can be improved much more.
For instance, if reliable transceivers with embedded
error correction is used, one can disable/enable lasers
on the fly to even further enhances the blinking effect.
Currently 6 laser pointers are utilized and which are
blinking 10 times in a second.

i W. Stuerzlinger, L. Zaman, A. Pavlovych, J.-Y. Oh, The Design and Realization of CoViD, A System for Collaborative
Virtual 3D Design, Virtual Reality, ISSN 1359-4338, 10(2), 135-147, Oct 2006

ii Pavlovych, A., Stuerzlinger W. Laser Pointers as Interaction Devices for Collaborative Pervasive Computing, Advances
in Pervasive Computing, Eds. Ferscha, Hoertner, Kotsis, OCG, ISBN 385403176-9, 315—320 , Feb 2004

	1. Introduction
	2. Milestones
	3. OptiTrack C120 Camera
	4. Obstacles
	4.1. Reverse engineering of C120
	4.2. Building a hard real-time system
	4.3. Syncing multiple laser pointers with multiple camera
	4.4. Make the laser pointers wireless

	5. Decoding a sample raw output of the camera
	6. Change the camera settings
	7. Start and stop C120
	8. Tricks to have longer “on” time for lasers
	9. Future work

