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Abstract—In this report we introduce a new method for deter-
mining correspondence in a sequence of images. We formulate a
probabilistic framework that relates a feature’s appearance and
its position under relaxed assumptions. We employ a Monte-
Carlo approximation for the joint probability density of the
feature position and its appearance that uses a flexible noise and
motion model to generate random samples. The joint probability
density is modeled by a Gaussian Mixture. The feature’s position
given its appearance is then determined by maximizing its
posterior. We evaluate our method using real and synthetic
sequences and compare its performance with leading or popular
algorithms from the literature. The noise robustness of our
algorithm is superior under a wide variety of conditions and
offers an effective alternative to hierarchical motion estimation.
The method can be applied in the context of optical flow, tracking
and any application that needs feature point matching.

Index Terms—Tracking, Optical Flow, Monte-Carlo

I. INTRODUCTION

THE problem of determining feature-point correspondence
in multiple images and its variants, like optical flow

and contour matching are at the core of many computer
vision problems such as motion segmentation, tracking, stereo,
structure from motion, etc. The problem of matching in all its
forms is ill conditioned and a great variety of assumptions
are employed in all the classical solutions [1]. It is usually
assumed that neighboring pixels move uniformly from one
frame to the other, that image brightness remains constant, that
motion is small or that noise is strictly Gaussian. However,
these assumptions hold only approximately and we usually
treat the effect of their violation as noise. Other sources of
noise include both camera and electronic(due to fluctuations
of photon and electron arrival), specular distortion and digiti-
zation.

To address these issues, several methods have been used
to relax one or more of these assumptions. At the core of
most such method is a novel formulation that specifically
address, often heuristically, a new paradigm regarding one
assumption or another. Another common approach is to in-
troduce a more sophisticated noise model that requires the
adjustment of many parameters. Since the causes of noise
and changes in appearance is sometimes caused by complex
physical phenomena, quite often not well understood with
mathematically intractable formulations, such methods are not
flexible to variations not specifically modeled.

In this work we introduce a probabilistic framework that
enables us to incorporate a great variety of noise models. This

is achieved by fitting a Gaussian Mixture Model (GMM) on
the probability that governs the relationship between feature
position and its appearance. To keep the method as general as
possible and still be able to employ models that are generative
but not analytical, we employ a Monte-Carlo technique [9].
Random samples that represent potential changes of feature
point appearance due to displacement and noise are gener-
ated about the feature. The Expectation Maximization (EM)
clustering algorithm [7] is then used to fit a GMM on the
samples, that describes the joint probability of feature position
and its appearance. It is of particular importance that our
method when applied with the same assumptions used by
Lucas & Kanade [11], yields the same algorithm as we show
in section III-C. We evaluate our algorithm with experiments
on both synthetic image sequences (where noise and motion
parameters are known) and real ones.

II. PREVIOUS WORK

Barron et al. provide an excellent performance analysis of
the classical solutions to the problem in [1]. The superior
performance of the Lucas & Kanade algorithm [11] has
made it a popular starting point for further improvement,
replacing the Horn & Schunk as the benchmark of choice
[17]. Such algorithms relied on a few strong assumptions
such as small motion (to enable using a first order Taylor
expansion), brightness constancy, smoothness of motion within
a small region and no explicit noise model. When combined,
such assumptions enables us to formulate the problem using
least-squares on an over-determined linear system. Such strong
assumptions often do not hold in practice, despite the fact that
they seem intuitive at first glance, making them applicable in
a very limited set of scenarios or on well conditioned test
sequences. In [12] the small motion assumption is addressed
using a hierarchical approach, that although it performs well
for larger motion, it loses its effectiveness for smaller ones.
Black and Anandan [2] use robust statistics [18] and formulate
the problem of determining flow using a robust M-Estimator in
order to reduce the effect of outliers on accuracy. Negahdaripur
[4] has proposed a new definition of optical flow that incorpo-
rates both geometric and radiometric cues from the image that
addresses violation of the brightness constancy assumption and
problems caused by specular reflections. His algorithm had
a similar formulation to the one used by Lucas & Kanade
with additional unknowns corresponding to affine brightness
change model. It successfully relaxes the brightness constancy
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assumption, however, it suffers from the other drawbacks of
the Lucas & Kanade algorithm.

Jepson and Black [8] have adapted the EM algorithm
for probabilistic mixture models in order to detect multiple
motions and thus, handle motion boundaries. Other methods
use particle filtering techniques [5]. Wong and Spetsakis [6]
provide a noise model that efficiently handles change of bright-
ness and affine deformation of feature appearance. In [13] a
RANSAC based algorithm is used for determining multiple
motion parameters for the purpose of motion segmentation
with the presence of large inter-frame motion. The KLT feature
detector [14] can be used to improve tracking by focusing
only on highly textured features. The SIFT [15] algorithm can
be used to match feature-points in the presence of change of
illumination and noise.

III. OUR METHOD

A. In a Nutshell

Many of the classical formulations [11], [17] begin with
the assumption that feature appearance does not change across
frames. This however is not the case as feature appearance can
change in several ways, which can be modeled as stochastic.
The intuition behind our approach is that if we compute the
joint probability of feature position and its appearance given
the image data and assuming a stochastic noise model, we can
determine correspondence by finding the maximum likelihood
position of the feature in the subsequent frame given its new
appearance. In Fig. 1 we show the same image feature in
subsequent frames subject to motion and various sources of
noise. In our approach we compute this joint probability given

(a) Feature position and its as-
sociated appearance at frame 1

(b) Feature position and its as-
sociated appearance at frame 2

Fig. 1. Association of feature position and appearance across multiple frames

a parametric noise model using a Monte-Carlo technique. The
appearance corresponding feature position in the subsequent
frame will maximize the joint probability density function
(pdf).

B. The Probabilistic Framework

Given a point ~x on the image plane, we define its appear-
ance ~I to be a vector that comprises all the intensities of the
pixels in a small neighborhood around point ~x

~I (~x) =


I
[
~x+ ~d1

]
...

I
[
~x+ ~dk

]


where I is the image as measured by the camera and ~di=1..k

are the positions of the pixels of the neighborhood relative to
~x. If two points ~xa and ~xb are projections of the same world
object on images Ia and Ib respectively, the appearance of
the corresponding neighborhoods may change due to camera
noise, varying illumination, digitization, deformation etc. so
that

~Ib (~xb) = ~Ia (~xa) + η (1)

where η is noise with pdf p(η | γ) and γ is a set that includes
all the parameters of the noise model. In the simplest case the
noise model parameters are just a mean and a variance, but in
our case will incorporate camera noise, changing illumination,
and image jitter and one can easily add other noise components
such as affine deformations etc. The conditional probability
density of ~Ib (~xb) can be written as

p(~Ib (~xb) |~xa, Ia, γ). (2)

This distribution can be determined given the noise model [6]
and can then be used, as we show later, to compute

p(~xa|~Ib (~xb) , Ia, ~xb, γ) (3)

from which the position ~xa in image Ia that corresponds to
the neighborhood ~Ib (~xb) can be estimated.

The pdf in Eq. (3) expresses the probabilistic model of
~xa given all that is normally available in a correspondence
problem. In such situations we are given neighborhood~Ib (~xb)
and we try to find the best match in an image Ia. The position
of the match, ~xa can depend on ~Ib (~xb) and Ia alone but in
some cases the pdf p(~xa | ~xb) is available as a prior and we
can take advantage of it, since we know ~xb. Eq. (3) from Bayes
rule becomes

p(~xa|~Ib (~xb) , Ia, ~xb, γ) =
p(~Ib (~xb) | ~xa, Ia, ~xb, γ)p(~xa | Ia, ~xb, γ)

p(~Ib (~xb) | Ia, ~xb, γ)
. (4)

In (4) the denominator p(~Ib (~xb) | Ia, ~xb, γ) is constant with
respect to the maximization variable ~xa and can be ignored.
The numeretor can be used in the form that appears in Eq.
(4), or can be seen as the joint probability of position and
appearance

p(~Ib (~xb) | ~xa, Ia, ~xb, γ)p(~xa | Ia, ~xb, γ) =
p(~xa,~Ib(~xb) | Ia, ~xb, γ).

Now, given the appearance vector ~Ib (~xb), we can estimate the
corresponding position in image Ia by maximizing the joint
probability of image appearance

~̂xa = max
~xa

(
p(~xa,~Ib(~xb) | Ia, ~xb, γ)

)
. (5)

This solution can form the basis for algorithms for feature
point matching, tracking and optical flow as follows. Using an
initial image data In centered on a feature point ~xn and a noise
and motion model, we first compute a distribution that relates
a posible position of the feature given changes in appearance
in between frames p(~xn+1,~In(~xn) | In+1, ~xn, γ)). Given a
vector ~In+1 representing a neighborhood in a different image,
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we can determine its most likely position by maximizing

~xn+1 = max
~xn+1

(
p(~xn+1,~In(~xn) | In+1, ~xn, γ)

)
This expression provides us with a powerful framework for
the estimation of correspondence of two points in an image
sequence under various conditions of noise and motion.

C. Revisiting Lucas & Kanade

To demonstrate the generality and power of this formu-
lation we derive from it the Lucas & Kanade algorithm by
introducing its underlying assumptions into the probabilistic
framework. The Lucas & Kanade algorithm is perhaps the
most successful of the early differential methods for computing
optical flow. While it remained obscure for over a decade,
a comparative study by Barron, Fleet and Beauchemin [1]
showed that it is far superior to the Horn & Schunk algorithm
[17] and replaced it as the default benchmark. The algorithm is
derived around three core assumptions: brightness constancy,
such that feature appearance does not change due to motion;
small motion, such that a first-order Taylor series can be used
for approximation; and smoothness of flow, which is used to
turn an ill-posed problem into an over-determined least-of-
squares problem by assuming that motion is identical for every
pixel within a small neighborhood. The solution is in the form

~un = M′−1~b (6)

where

M′ =

[ ∑
I2x

∑
IxIy∑

IxIy
∑

I2y

]
,

~un is the vector of motion parameters at time n,

~b =

[
−
∑

IxIt
−
∑

IyIt

]
,

Ix and Iy are the directional derivatives of the image, It is the
time derivative of the image and the summation is over the
small neighborhood of feature. In reality, M’ may be singular
and thus non-invertible. In order to have stable behavior, in
most practical implementations of the algorithm Eq. (6) is
modified to include a stabilization constant

~un = (M′ + ε1)−1~b

where ε is usually a small number.
We show later in this section how we can relax these

assumptions to obtain a more general solution. The joint
probability of feature position and its appearance is implicitly
assumed Gaussian in the original paper [11]

p(~xn+1,~In | In+1, ~xn, γ) = G(~xn+1,~In; ~µ~x,~I,C~x,~I) (7)

thus, Eq. (5) can find the value for ~xn+1 by minimizing the
Mahalanobis distance

MxI =

[
~In − ~µI

~xn+1 − ~µ~x

]T
C−1

~x,~I

[
~In − ~µI

~xn+1 − ~µ~x

]
(8)

where

~µI =


In+1

[
~µ~x + ~d1

]
...

In+1

[
~µ~x + ~dk

]
 =~In+1.

Unless we have a prior for ~xn+1

~µ~x = ~xn,

vector ~In is the image data in the neighborhood of the feature
point at time n and vector ~In+1 is the image data in the
neighborhood of the same feature at time n + 1. The joint
mean of ~xn+1 and ~In is

~µ~x,~I =

[
~µI

~µx

]
.

The joint covariance matrix of ~xn+1 and ~In

C~x,~I = E

{[
~In − ~In+1

~xn+1 − ~xn

][
~In − ~In+1

~xn+1 − ~xn

]T}
can be partitioned in the following manner

C~x,~I =

[
CII CTIx
CxI Cxx

]
where

CII = E
{(

~In − ~In+1

) (
~In − ~In+1

)T} (9)

Cxx = E
{(

~xn+1 − ~xn
) (

~xn+1 − ~xn
)T}(10)

CxI = E
{(

~xn+1 − ~xn
) (

~In − ~In+1

)T} (11)

and the matrix can be efficiently inverted using the method of
inversion by partitioning [9]

C−1

~x,~I
=

[
SII STxI
SxI Sxx

]
(12)

where

SII =
(
CII − CIxC−1

xxCxI
)−1

(13)

SxI = −
(
Cxx − CxIC−1

II CIx
)−1 (CxIC−1

II

)
(14)

Sxx =
(
Cxx − CxIC−1

II CIx
)−1

(15)

Using (12) MxI becomes

MxI =
(
~In − ~In+1

)T
SII

(
~In − ~In+1

)
+(

~xn+1 − ~xn
)T SxI

(
~In − ~In+1

)
+(

~In − ~In+1

)T
STxI

(
~xn+1 − ~xn

)
+(

~xn+1 − ~xn
)T Sxx

(
~xn+1 − ~xn

)
We can find the value for ~xn+1 that minimizes MxI by taking
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partial derivative with respect to ~xn+1 and equating it to zero

∂MxI

∂~x
= 2

(
~In − ~In+1

)
STxI

+ 2
(
~xn+1 − ~xn

)T Sxx
= 0

from where we get

~xn+1 = ~xn − STxIS−1
xx

(
~In − ~In+1

)
substituting (14) and (15)

~xn+1 = ~xn + CxIC−1
II

(
~In − ~In+1

)
. (16)

The noise in the image measurements in [11] can be modeled
by

~In(~xn) =~In+1(~xn+1) + ηn (17)

where ηn is implicitly assumed to be an independent, identi-
cally distributed (i.i.d) additive noise. Assuming small motion
[11], the variance of ~xn+1 is simply Cxx = σ2

xx1 and we
can approximate ~In using a first order Taylor Series

~In(~xn+1) = ~In(~xn) + ∇~In
T

(~xn+1 − ~xn) (18)

where

∇~In =


In,x

[
~xn + ~d1

]
In,y

[
~xn + ~d1

]
...

...

In,x
[
~xn + ~dk

]
In,y

[
~xn + ~dk

]
 .

Now, we can apply (18) and (17) to (11) and (9)

CxI = σ2
xx∇~In

T
(19)

and
CII = σ2

xx∇~In∇~In
T

+ σ2
ηη1 (20)

We invert CII by applying the Woodbury identity [9] to (20)

CII = σ2
ηη(1 −

σ2
xx

σ2
ηη

∇~InΦ∇~In
T
)

where
Φ = (1 +

σ2
xx

σ2
ηη

∇~In
T
∇~In)−1

and from (16), (19) and (20)

~xn+1 = ~xn + (
σ2
nn

σ2
xx

1+ M′)−1∇~In
T
(
~In − ~In+1

)
(21)

where

M′ = ∇~In
T
∇~In =

[ ∑
I2x

∑
IxIy∑

IxIy
∑

I2y

]
which is the matrix used for the solution proposed by Lucas

& Kanade. If we set
σ2
xx

σ2
ηη

= ε, then M′ + ε1 = M and we

can rewrite (21) as

~xn+1 = ~xn + M−1∇~In
T
(
~In − ~In+1

)
, (22)

and after rearranging (22), we get

~xn+1 − ~xn = M−1∇~In
T
(
~In − ~In+1

)
. (23)

By applying the nomenclature used by Lucas & Kanade,
~xn+1 − ~xn = ~un is the motion vector associated with
frame n and ~In+1 −~In = It the time derivative of the image.
We now make the observation that:

−∇~In
T
· It =

[
−
∑

IxIt
−
∑

IyIt

]
= ~b

We can now rewrite (23):

~un = M−1~b,

which has the same form as (6). An interesting observation
to make is that when deriving the Lucas & Kanade formula-
tion by explicitly considering the mathematical implications
of their assumptions, the use of a stabilization constant is
supported by theory and not by practice only.

Now that we have rederived the solution proposed by Lucas
& Kanade using our probabilistic framework, we can relax
the Lucas & Kanade assumptions that were incorporated into
our framework. In the following sections a more general
noise model will be developed, taking into account random
fluctuations of light intensity and affine deformation. The
assumption of a Gaussian pdf given in (7) will be replaced
with a GMM.

D. Modeling Probabilities Using a Mixture of Gaussians

Now that we have introduced our probabilistic framework
and used it to derive the Lucas-Kanade correspondence method
by incorporating its implicit assumptions, we can extend our
method by relaxing the assumptions. Using a GMM in place
of a single Gaussian, we can attain a better approximation of
any arbitrary joint pdf of image appearance and position. The
pdf from (7) can thus be reformulated as:

p( ~xn+1 , ~In | In+1, ~xa, γ) =
N∑
i=1

πjG(~x,~I;j ~µ~x,~I,
j C~x,~I)

(24)
where πi is the mixture prior, j~µ~x,~I is the mean and jC~x,~I the
covariance matrix of the jth component. There are two distinct
problems that we must solve: fitting and maximization. The
method that we use to fit a joint pdf for position and image
appearance is described later in this section. In the previous
section we have shown how we could find the maximum
likelihood value for ~x given ~I simply by maximizing the
log-likelihood, when using the Lucas & Kanade assumptions.
However, using a GMM this cannot be directly done as we
cannot derive a closed form solution for ~x. Instead, we first
determine the mixture component k that is the most likely
cause of our data ~I by minimizing the Mahalanobis distance
as determined in (8) with parameters

kµ =

 k~µI
k ~µx,
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kC~x,~I =

[
kCII kCTIx
kCxI kCxx

]
and ~x is then calculated as in (16):

~x = k ~µx + kCxIkC−1
II

(
~I − k~µI

)
. (25)

Although (25) is only an approximate closed form solution for
~x, the empirical evidence we present in Sec. IV-A indicates
that the approximation has negligible contribution to the error.
Next we introduce the statistical model we use to form (24).

E. Noise Model

The noise model should reflect possible changes to image
appearance between two frames. We use a similar noise model
to the one utilized by Wong and Spetsakis [6]. Besides inter-
frame motion and i.i.d camera noise that were considered
previously, we can expand our noise model to contain a
wider range of changes and deformations such as random
fluctuations of illumination and pixelwise jitter. We model
the image appearance at a given time as a function of the
appearance at the previous frame:

~In+1[~xb] = ~In[~xa + ~un] + ~ηn

+ Diag(~Ix[~xa + ~un])~$n

+ Diag(~Iy[~xa + ~un])~εn
+ ~In[~xa + ~un]β + ~1α

where Diag(~Ix) is a diagonal matrix consisting of the elements
of ~Ix and similarly for ~Iy . The random variables are: ~ηn, a
random vector representing i.i.d camera noise, ~$n and ~εn, also
i.i.d random vectors representing small horizontal and vertical
pixelwise motion within a neighborhood (like leaves fluttering
in the wind), β, a random scalar that reflects multiplicative
change of illumination with respect to the original image and
α, a random scalar reflecting additive change of illumination as
proposed by Negahdaripour [16] that it is normally sufficient
to model brightness change as affine. The inter-frame motion
of the feature is represented by the flow vector ~un, which is a
random vector that reflects our expectations of feature motion
between frames.

We now complete our solution by fitting a GMM for our
uncertainty model using a generative approach.

F. Generative Model for Probability Distributions

Now that we have introduced a realistic uncertainty model
and an efficient way to determine the most likely position
of a feature point, we need a way to fit a pdf that reflects
our model. We approximate the GMM using a Monte-Carlo
approach: we first take random samples of neighborhoods that
reflect changes of feature appearance due to both displacement
and noise (as described by the noise model, introduced in the
previous section) and then approximating a GMM using the
EM clustering algorithm.

The random samples used by the Monte-Carlo method
should reflect our assumptions regarding noise and displace-
ment. For each feature that we want to track we take N random

samples where the formula for the ith sample can be written
as

Pi = ~In[~xa + ~un] + ~ηn

+ Diag(~Ix[~xa + ~un])~$n

+ Diag(~Iy[~xa + ~un])~εn
+ ~In[~xa + ~un]β + ~1α

where Pi is a possible appearance of the neighborhood around
the feature in the subsequent frame. The random variables
presented during the discussion of our noise model are used
to generate a random observation for each sample. Their
distribution parameters can be modified according to a specific
application or when certain knowledge about the scene is
known. For example, in a stereo problem the random motion
~u can be distributed according to the epipolar constraint.
In our tracking examples presented in Sec. IV-B, no prior
information regarding the motion of vehicles was assumed,
thus ~v was isotropically distributed about the initial feature
position with σ = 7 pix. The other random variables are
generated in accordance of their corresponding parameters
in the noise model. For example, $ and ε are i.i.d vectors
generated according to a normal distribution with σ = 0.25 to
represent small subpixel jitter. ~η represents camera noise and
is thus an i.i.d normal vector with σ = 2 greylevels.

Fig. 2. An illustration of 1000 random samples about the feature point
clustered into 5 components in 27 dimensions

The samples that we generate according to the noise model
provide us with statistical behavior of feature appearance.
After generating a sufficient number of sample points, we find
the GMM that best fits the samples using the EM algorithm,
where each pixel position relative to the center of every
neighborhood sample is a separate dimension. In our tests we
have used 5-by-5 neighborhoods, giving us 27 dimensions in
total, 25 for appearance and 2 for position. An illustration
of clustered random samples generated using our method is
presented in Fig. 2.

IV. EXPERIMENTAL RESULTS

The results are presented in two parts. First, a quantitative
evaluation of our correspondence method under known noise
and motion parameters is presented, a long with a compar-
ative study of other methods from the literature using still
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real images with synthetically generated motion and noise.
Second, we provide a qualitative demonstration of the tracking
algorithm using real world data, with no known ground truth.

A. Synthesized Noise and Motion

To gauge the performance of of our method we use a real
image and apply a known noise and motion model to it.
We apply three types of modification to image appearance:
i.i.d white camera noise with σ = 2 greylevels, random
change of brightness σ = %5, and random motion, which
is isotropically distributed in the range of 0 . . . 3 about the
initial feature position. Subpixel accuracy in motion is attained
using a 5 shot polynomial interpolation. We then randomly
select good trackable features using the KLT method [14] and
compare the Mean Square Error (MSE) measure produced
using four correspondence methods: Lucas & Kanade (LK)
[11], Negahdaripour’s Generalized Dynamic Image Model
(GDIM) [16], Black & Anandan’s robust flow (BA) [3], and
the Probabilistic Framework for Feature-Point Matching we
have proposed in this paper (PFFM). To model changes in
appearance in the PFFM model, we use the same noise and
motion parameters that are used to generate each frame.

(a) Mean Square Error using each of the methods. The
blue bars represent MSE in the horizontal direction and
the red bars represent errors in the vertical direction.

(b) Overall reliability of each method.

Fig. 3. Comparison of overall performance

As may be expected, having good statistical estimate of
changes in image appearance lead to better success in cor-
respondence. A bar chart of the MSE attained using each
method, in both the horizontal (blue) and vertical (red) are
presented in Fig. 3(a). Using the Lucas & Kanade algorithm in
this context, the new feature point position is recovered with a
MSE measure of 7.1 for horizontal and 4.2 for vertical. Using

the GDIM method, brightness change is recovered, providing
better results. Using this method the new feature point position
is recovered with a MSE measure of 2.9 for horizontal and 2.1
for vertical. The BA method promises improved accuracy as
it robustly fits motion parameters, while eliminating outliers.
However, we have found that performance was comparable to
that of GDIM with MSE measures of 2.8 in the horizontal
direction and 3.0 in the vertical direction. Using the PFFM
method we attain the greatest accuracy with MSE measures
of 0.3 for both horizontal and vertical. The PFFM is also
consistently reliable, with error not exceeding 1 pixel in any
direction %86 of the times (see Fig. 3(b)). We have plotted

Fig. 4. Comparison of PFFM with GDIM and BA. The graph shows error
as a function of displacement. LK is not shown as it barely fits within the
desired plot region

error as a function of total displacement for each method in
Fig. 4. We have omitted LK from this plot as it was unreliable
even for small displacements and would thus not fit in the
desired plot size. The graph indicates that our method is more
reliable even for larger displacements.

Our method of selecting a component based on the Ma-
halanobis distance picks the component that produces the
minimal error %70 of the time. We have determined that the
total contribution to the MSE measure caused by picking the
wrong component is 0.04. This was done by computing a
penalty equal to the difference between the error resulting from
the cluster we have selected and the minimal error produced
by any cluster.

B. Tracking Vehicles on a Highway

In order to demonstrate the applicability of our method to
tracking, we have acquired a short video of vehicles on a
freeway. The sequence was captured using a standard point-
and-shoot digital camera’s video option at 24 fps. The camera
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was hand held and the photographer was purposely shaking
the camera during the capture. Image resolution is 640x480
and a typical frame is shown in Fig. 5. We select good

Fig. 5. Frame 30 from the video sequence

trackable features using the KLT method [14] and choose
to track one that belongs to a moving vehicle. The feature
we have selected falls on the front bumper of a sedan in
frame 15 (Fig. 7(a)). We have tracked the target for 15 frames
and the result is shown in Fig. 7(b). Although the target has
drifted a bit backwards to the sedan’s window, our method
successfully kept up with the motion of the vehicle. During the
sequence the vehicle has moved about 100 pixels with single
frame motion ranging between negligible and about 15 pixels.
Overall, feature appearance as represented by a neighborhood
of 5x5 pixels around it is not a strong descriptor and cannot
form the basis of a tracking algorithm on its own, as it may
drift slightly every frame ultimately loosing the target. Our
results indicate that our algorithm can be used as a way to
determine correspondence under relaxed assumptions of noise
and motion of a more robust tracking algorithm that uses
multiple feature points on an object.

Our method does not explicitly model motion boundaries
and will thus be susceptible to failure when a tracked object
crosses a motion boundary. Another issue with our method is
that of efficiency. Depending on the parameters in the noise
model, a large number of samples may need to be clustered.
The EM algorithm is not time efficient and is currently the
bottleneck in our method. For each tracked point our method
takes a couple of seconds per frame.

V. CONCLUSION

We have presented a new algorithm for feature-point match-
ing that uses a probabilistic framework to model uncertainty
regarding changes in image appearance. We have further
shown that when our probabilistic framework is used in
conjunction with the assumptions inherent to the Lucas &
Kanade algorithm, we can reduce our solution to theirs. Earlier
methods that relied on such strong assumptions can not be
easily extended to handle additional causes of deformation

(a) Frame 15 with the selected feature in red

(b) Frame 30 with the tracked feature in red

Fig. 6. Tracking a feature point over 15 frames

without loosing their flexibility. Our probabilistic framework
is flexible in the sense that a great variety of noise models
can be easily incorporated. Since we do not have a closed
form joint probability density function of feature position
and its appearance, we approximate it using a generative
approach. We use a Monte-Carlo technique to generate random
samples of possible appearance of image data under our
noise model and fit a GMM using EM clustering. Using
synthetic image sequences that simulate relaxed assumptions,
we have demonstrated that our method performs better than
some popular two of the best algorithms in the literature.
Our comparative study included the Lucas & Kanade algo-
rithm, Negahdaripour’s Generalized Dynamic Image Model
and Black & Anandan robust flow. We have demonstrated
the efficacy of our algorithm in feature-point tracking using
sequences of freeway traffic. Our algorithm has performed
generally well when tracking good features at the absence of
motion boundaries. In future work we will extend our tracking
algorithm, using an affine model on multiple feature points in
order to attain more robust performance.
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