
Aggregation and Composition

[notes Chapter 4]

1

Aggregation and Composition
 the terms aggregation and composition are used to

describe a relationship between objects
 both terms describe the has-a relationship

 the university has-a collection of departments
 each department has-a collection of professors

 composition implies ownership
 if the university disappears then all of its departments disappear
 a university is a composition of departments

 aggregation does not imply ownership
 if a department disappears then the professors do not disappear
 a department is an aggregation of professors

2

Aggregation
 suppose a Person has a name and a date of birth

public class Person {

 private String name;

 private Date birthDate;

 public Person(String name, Date birthDate) {

 this.name = name; this.birthDate = birthDate;

 }

 public Date getBirthDate() {

 return birthDate;

 }

}

3

 the Person example uses aggregation
 notice that the constructor does not make a copy of the

name and birth date objects passed to it
 the name and birth date objects are shared with the client
 both the client and the Person instance are holding

references to the same name and birth date

4

// client code somewhere
String s = "Billy Bob";
Date d = new Date(91, 2, 26); // March 26, 1991
Person p = new Person(s, d);

5

64 client

s 250

d 350

p 450

...

250 String object

...

...

350 Date object

...

...

450 Person object

name 250

birthDate 350

 what happens when the client modifies the Date
instance?

 prints Fri Nov 03 00:00:00 EST 1995

6

// client code somewhere
String s = "Billy Bob";
Date d = new Date(90, 2, 26); // March 26, 1990
Person p = new Person(s, d);

d.setYear(95); // November 3, 1995
d.setMonth(10);
d.setDate(3);
System.out.println(p.getBirthDate());

 because the Date instance is shared by the client and
the Person instance:
 the client can modify the date using d and the Person

instance p sees a modified birthDate
 the Person instance p can modify the date using birthDate

and the client sees a modified date d
 note that even though the String instance is shared

by the client and the Person instance p, neither the
client nor p can modify the String
 immutable objects make great building blocks for other

objects
 they can be shared freely without worrying about their state

7

UML Class Diagram for Aggregation

8

Person String Date

1 1

number of Date
objects each Person has

number of String
objects each Person has

open diamonds
indicate aggregation

Aggregation Example
 suppose we want to implement a class to represent

standard playing cards
 a card has-a suit (club, diamond, heart, spade)

 we will represent the suit with a String
 a card has-a rank (2, 3, 4, …, jack, queen, king, ace)

 we will represent the rank with a String
 cards have a natural ordering (by rank; we will assume aces

are the highest rank)
 impose a class-invariant

 the suit and rank are always valid for a constructed card

9

Card String

2

CardUtil
 we will find it useful to create a utility class that

defines the legal ranks and suits of cards

package playingcard;

import java.util.HashMap;

import java.util.ArrayList;

final class CardUtil {

 static final HashMap<String, Integer> RANKS =

 createRanks();

 static final ArrayList<String> SUITS = createSuits();

10

no access modifier means that
CardUtil is "package private";
only classes inside the package
playingcard can see CardUtil

CardUtil
 static HashMap<String, Integer> createRanks()

 {

 HashMap<String, Integer> r =

 new HashMap<String, Integer>();

 r.put("two", 2);

 r.put("three", 3);

 r.put("four", 4);

 // and so on ...

 r.put("queen", 12);

 r.put("king", 13);

 r.put("ace", 14);

 return r;

 }

11

CardUtil
 static ArrayList<String> createSuits()

 {

 ArrayList<String> s = new ArrayList<String>();

 s.add("club");

 s.add("diamond");

 s.add("heart");

 s.add("spade");

 return s;

 }

12

Card
package playingcard;

public class Card implements Comparable<Card>

{

 private final String rank;

 private final String suit;

 public Card(String rank, String suit)

 {

 checkRank(rank);

 checkSuit(suit);

 this.rank = rank;

 this.suit = suit;

 }

13

Remember the class invariant: the
rank and suit must always be valid
for a constructed card; we have to
validate the rank and suit arguments.

Card
 private void checkRank(String rank)

 {

 if(CardUtil.RANKS.get(rank) == null)

 {

 throw new IllegalArgumentException(rank + " is not a

 valid Card rank.");

 }

 }

14

Remember that CardUtil.RANKS is a map where the keys are Strings
like "two", "ace", and "seven". CardUtil.RANKS holds all of the valid
ranks as keys. If the key given by the String rank is not in the map
then it must be an invalid rank.

Card
 private void checkSuit(String suit)

 {

 if(!CardUtil.SUITS.contains(suit))

 {

 throw new IllegalArgumentException(suit + " is not a

 valid Card suit.");

 }

 }

15

Remember that CardUtil.SUITS is a list holding all of the valid
suits. If the suit given by the String suit is not in CardUtil.SUITS
then it must be an invalid suit.

Card
 public String getRank()

 {

 return this.rank;

 }

 public String getSuit()

 {

 return this.suit;

 }

16

Card
 @Override public boolean equals(Object obj)
 {
 boolean eq = false;
 if(this == obj)
 {
 eq = true;
 }
 else if(obj != null && this.getClass() == obj.getClass())
 {
 Card other = (Card) obj;
 eq = this.getRank().equals(other.getRank()) &&
 this.getSuit().equals(other.getSuit());
 }
 return eq;
 }

17

Remember the pattern for implementing
equals is always the same:
1. check if this and obj are the same object
2. check if obj is not null AND
3. this and obj are instances of the same class
4. check if the corresponding attributes are equals

Remember to watch out for the case where the
attributes can be null; this complicates step 4.

Card
 @Override public int hashCode()
 {
 return this.getRank().hashCode() +
 this.getSuit().hashCode();
 }

 @Override public String toString()
 {
 StringBuffer result = new StringBuffer();
 result.append(this.getRank());
 result.append(" of ");
 result.append(this.getSuit());
 result.append("s");
 return result.toString();
 }

18

Remember that because we
overrode equals we need to
override hashCode.

Card
 @Override public int compareTo(Card other)

 {

 String myRank = this.getRank();

 String otherRank = other.getRank();

 Integer myValue = CardUtil.RANKS.get(myRank);

 Integer otherValue = CardUtil.RANKS.get(otherRank);

 return myValue.intValue() - otherValue.intValue();

 }

19

Remember that if we choose to implement Comparable, we have
to implement compareTo. compareTo must return:
1. a negative int if the value of this is less than the value of other
2. zero if the value of this is the same as the value of other
3. a positive int if the value of this is greater than the value of other

	Aggregation and Composition
	Aggregation and Composition
	Aggregation
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	UML Class Diagram for Aggregation
	Aggregation Example
	CardUtil
	CardUtil
	CardUtil
	Card
	Card
	Card
	Card
	Card
	Card
	Card

