
Implementing Aggregation and
Composition

Ahmed Sabbir Arif

Copy Constructor

2

o Shallow and deep copy.

Image: javaworld.com

http://www.javaworld.com/javaworld/javatips/jw-javatip76.html

Shallow Copy

o A copy is attached to the same memory block as the
original.
– Hence, also known as address copy.

o Same data will be shared between the original and
the copy.
– Hence, modifying the one will alter the other.

3

Image: javaworld.com

http://www.javaworld.com/javaworld/javatips/jw-javatip76.html

Deep Copy

o The data are actually copied over.
o The original and the copy do not depend on each

other
– But it is slower more expensive copy

o If a class is immutable, then there’s no point making
a deep copy.

4

Image: javaworld.com

http://www.javaworld.com/javaworld/javatips/jw-javatip76.html

Composition

o The terms aggregation and composition are used to
describe a relationship between objects.

o Both terms describe the has-a relationship:
– The university has-a collection of departments.
– Each department has-a collection of professors.

o Composition implies ownership:
– If the university disappears then all of its departments

disappear.
– A university is a composition of departments.

5

Example: A Deck of Cards

o A class to represent a deck of cards:
– A deck has-a collection of 52 cards.

o The deck should own the cards:
– A deck is a composition of cards.

6

o A client can ask the deck to deal a card:
– The deck gives up ownership of the card.
– The client takes ownership of the card.

o A client can try to give a dealt card back to the deck:
– The deck takes ownership of the card if and only if it does

not have the same card already.
– Class invariant: the cards in a deck are unique.

7

o A client can ask for the deck to be shuffled.
o A client can ask to see all of the cards without the

deck giving up ownership of any of the cards
– We will implement the Iterable interface for the deck
– Lets clients write code like:

Deck theDeck = new Deck();
for(Card c : theDeck) // for each Card c in theDeck
{
 System.out.println(c);
}

8

Deck List<Card>
1

filled diamond
indicates

composition

Iterators

o An iterator is an object that provides access to each
element of a collection in sequential order.

o An iterator must implement the Iterator interface
found in java.util.

public interface Iterator<E>
{
 public boolean hasNext();
 public E next();
 public void remove(); // optional
}

9

Iterable Interface

o Every Collection type supplies an iterator by
implementing the Iterable interface

 public interface Iterable<T>
 {
 public Iterator<T> iterator();
 }

10

Iterating with hasNext

o Prior to Java 1.5 you would iterate over a Collection
like so:

11

// ...
ArrayList<String> lst = new ArrayList<String>();
lst.add("apple");
lst.add("banana");
lst.add("mango");
for(Iterator<String> iter = lst.iterator(); iter.hasNext();)
{
 String s = iter.next();
 System.out.println(s.replace('a', 'A') + " ");
}
// prints Apple bAnAnA mAngo

Iterating with for-each

o The preferred method is to use a for-each loop:

12

// ...
ArrayList<String> lst = new ArrayList<String>();
lst.add("apple");
lst.add("banana");
lst.add("mango");
for(String s : lst) // for each String s in lst
{
 System.out.println(s.replace('a', 'A') + " ");
}
// prints Apple bAnAnA mAngo

Deck

package playingcard;

import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.ArrayList;

public class Deck implements Iterable<Card>
{
 private final List<Card> cards;

13

Deck

 public Deck() {
 this.cards = new ArrayList<Card>();
 this.reset();
 }

 public void reset() {
 this.cards.clear();
 final Set<String> keys = CardUtil.RANKS.keySet();
 for(String rank : keys) {
 for(String suit : CardUtil.SUITS) {
 cards.add(new Card(rank, suit));
 }
 }
 }

14

The Deck owns its Cards; thus
it must create and own its own
List of Cards.

Map does not supply an iterator to its keys or
values, but it can return its keys as a Set.

Deck

 public void shuffle()
 {
 Collections.shuffle(this.cards);
 }

 public int getNumberOfCards()
 {
 return this.cards.size();
 }

15

Deck

 public Card deal()
 {
 Card c = null;
 if(this.getNumberOfCards() > 0)
 {
 c = this.cards.remove(0);
 }
 return c;
 }

16

When a Deck deals a Card, it is giving up ownership of the Card; therefore,
the Deck needs to remove the Card from its internal state. In this case, we
always deal from the top of the Deck, so we remove the first Card stored in
the List this.cards (the zeroth card).

Deck

 public boolean take(Card c)
 {
 boolean ok = false;
 if (!this.cards.contains(c))
 {
 ok = this.cards.add(c);
 }
 return ok;
 }

17

A client can ask a Deck to take a Card from the client; in this case, the client is
asking the Deck to take ownership of the Card. Because of the class invariant
(Deck holds unique Cards), the take implementation must check that the Card
c is not already in this.cards. The Deck takes ownership of the Card c if and
only if it does not already have a card identical to c.

Implementing equals for Deck

o You might be tempted to write something like the
following in equals()

eq = this.cards.equals(other.cards);

o Unfortunately, this does not work because the order
of the list elements matters for List.equals()
– A list with elements { 1, 2, 3, 4 } is not equals to a list with

elements { 4, 3, 2, 1 }

18

o We can use List.containsAll()
– A list with elements { 1, 2, 3, 4 } contains all of the

elements in the list { 4, 3, 2, 1 }
– But a list with elements { 1, 2, 3, 4 } also contains all of the

elements in the list { 4, 3 }

o We will say that two Decks are equal if they have the
same number of cards and they contain the same
cards.

19

Deck equals

 @Override public boolean equals(Object obj) {
 boolean eq = false;
 if (this == obj) {
 eq = true;
 }
 else if(obj != null && this.getClass() == obj.getClass())
 {
 Deck other = (Deck) obj;
 eq = this.cards.size() == other.cards.size() &&
 this.cards.containsAll(other.cards);
 }
 return eq;
 }

20

Deck iterator

 @Override public Iterator<Card> iterator()
 {
 return this.cards.iterator();
 }

21

Because Deck implements Iterable<Card>, we must provide a method that
returns an iterator to a Card. We could implement our own Card iterator
class, but the List contained by the Deck already supplies an iterator for us. In
this case, we can just delegate to this.cards to get a suitable iterator.

Exercises

o Add a constructor that constructs a Deck given a
Collection of Cards

 public Deck(Collection<Card> cards)
– Hint: use the Collections utility

o Add a method that sorts the Deck by rank
 public void sort()

– Hint: use the Collections utility

o Implement toString()

22

	Implementing Aggregation and�Composition
	Copy Constructor
	Shallow Copy
	Deep Copy
	Composition
	Example: A Deck of Cards
	Slide Number 7
	Slide Number 8
	Iterators
	Iterable Interface
	Iterating with hasNext
	Iterating with for-each
	Deck
	Deck
	Deck
	Deck
	Deck
	Implementing equals for Deck
	Slide Number 19
	Deck equals
	Deck iterator
	Exercises

