
Inheritance

Notes Chapter 6 and AJ Chapters 7 and 8

1

Inheritance
 you know a lot about an object by knowing its class
 for example what is a Komondor?

2

http://en.wikipedia.org/wiki/File:Komondor_delvin.jpg

3

... Komondor BloodHound

PureBreed Mix

Dog

Object

Dog is-a Object

PureBreed is-a Dog
PureBreed is-a Object

Komondor is-a PureBreed
Komondor is-a Dog
Komondor is-a Object

4

... Komondor BloodHound

PureBreed Mix

Dog

Object

subclass of Object
superclass of PureBreed

subclass of Dog
superclass of Komondor

superclass of Dog
(and all other classes)

superclass ==
 base class
 parent class

subclass ==
 derived class
 extended class
 child class

5

... Komondor BloodHound

PureBreed Mix

Dog

Object

Dog extends Object

PureBreed extends Dog

Komondor extends
 PureBreed

Some Definitions
 we say that a subclass is derived from its superclass
 with the exception of Object, every class in Java has

one and only one superclass
 Java only supports single inheritance

 a class X can be derived from a class that is derived
from a class, and so on, all the way back to Object
 X is said to be descended from all of the classes in the

inheritance chain going back to Object
 all of the classes X is derived from are called ancestors of X

6

Why Inheritance?
 a subclass inherits all of the non-private members

(attributes and methods but not constructors) from
its superclass
 if there is an existing class that provides some of the

functionality you need you can derive a new class from the
existing class

 the new class has direct access to the public and
protected attributes and methods without having to re-
declare or re-implement them

 the new class can introduce new attributes and methods
 the new class can re-define (override) its superclass

methods

7

Is-A
 inheritance models the is-a relationship between

classes
 from a Java point of view, is-a means you can use a

derived class instance in place of an ancestor class
instance

8

public someMethod(Dog dog)
{ // does something with dog }

// client code of someMethod

Komondor shaggy = new Komondor();
someMethod(shaggy);

Mix mutt = new Mix ();
someMethod(mutt);

Is-A Pitfalls
 is-a has nothing to do with the real world
 is-a has everything to do with how the implementer

has modelled the inheritance hierarchy
 the classic example:
 Circle is-a Ellipse?

9

Circle

Ellipse

Circle is-a Ellipse?
 if Ellipse can do something that Circle cannot,

then Circle is-a Ellipse is false
 remember: is-a means you can substitute a derived class

instance for one of its ancestor instances
 if Circle cannot do something that Ellipse can do then you

cannot (safely) substitute a Circle instance for an Ellipse
instance

10

// method in Ellipse

/*

 * Change the width and height of the ellipse.

 * @param width The desired width.

 * @param height The desired height.

 * @pre. width > 0 && height > 0

 */

public void setSize(double width, double height)

{

 this.width = width;

 this.height = height;

}

11

 there is no good way for Circle to support setSize
(assuming that the attributes width and height are
always the same for a Circle) because clients expect
setSize to set both the width and height

 can't Circle override setSize so that it throws an
exception if width != height?
 no; this will surprise clients because Ellipse setSize

does not throw an exception if width != height
 can't Circle override setSize so that it sets
width == height?
 no; this will surprise clients because Ellipse setSize

says that the width and height can be different

 12

 what if there is no setSize method?
 if a Circle can do everything an Ellipse can do then
Circle can extend Ellipse

13

Implementing Inheritance
 suppose you want to implement an inheritance

hierarchy that represents breeds of dogs for the
purpose of helping people decide what kind of dog
would be appropriate for them

 many possible attributes:
 appearance, size, energy, grooming requirements, amount

of exercise needed, protectiveness, compatibility with
children, etc.

 we will assume two attributes measured on a 10 point scale
 size from 1 (small) to 10 (giant)
 energy from 1 (lazy) to 10 (high energy)

14

Dog
public class Dog extends Object

{

 private int size;

 private int energy;

 // creates an "average" dog

 Dog()

 { this(5, 5); }

 Dog(int size, int energy)

 { this.setSize(size); this.setEnergy(energy); }

15

 public int getSize()
 { return this.size; }

 public int getEnergy()
 { return this.energy; }

 public final void setSize(int size)
 { this.size = size; }

 public final void setEnergy(int energy)
 { this.energy = energy; }
}

16

why final? stay tuned…

What is a Subclass?
 a subclass looks like a new class that has the same API

as its superclass with perhaps some additional
methods and attributes

 inheritance does more than copy the API of the
superclass
 the derived class contains a subobject of the parent class
 the superclass subobject needs to be constructed (just like a

regular object)
 the mechanism to perform the construction of the superclass

subobject is to call the superclass constructor

17

Constructors of Subclasses
1. the first line in the body of every constructor must

be a call to another constructor
 if it is not then Java will insert a call to the superclass

default constructor
 if the superclass default constructor does not exist or is private

then a compilation error occurs

2. a call to another constructor can only occur on the
first line in the body of a constructor

3. the superclass constructor must be called during
construction of the derived class

18

Mix (version 1)
public final class Mix extends Dog
{ // no declaration of size or energy; inherited from Dog
 private ArrayList<String> breeds;

 public Mix ()
 { // call to a Dog constructor
 super();
 this.breeds = new ArrayList<String>();
 }

 public Mix(int size, int energy)
 { // call to a Dog constructor
 super(size, energy);
 this.breeds = new ArrayList<String>();
 }

19

 public Mix(int size, int energy,

 ArrayList<String> breeds)

 { // call to a Dog constructor

 super(size, energy);

 this.breeds = new ArrayList<String>(breeds);

 }

20

Mix (version 2)
public final class Mix extends Dog
{ // no declaration of size or energy; inherited from Dog
 private ArrayList<String> breeds;

 public Mix ()
 { // call to a Mix constructor
 this(5, 5);
 }

 public Mix(int size, int energy)
 { // call to a Mix constructor
 this(size, energy, new ArrayList<String>());
 }

21

 public Mix(int size, int energy,

 ArrayList<String> breeds)

 { // call to a Dog constructor

 super(size, energy);

 this.breeds = new ArrayList<String>(breeds);

 }

22

23

Dog

- size : int

- energy : int

+ setSize()

+ setEnergy()

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

Mix

- breeds : ArrayList<String>

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

 why is the constructor call to the superclass needed?
 because Mix is-a Dog and the Dog part of Mix needs to be

constructed
 a derived class can only call its own constructors or the

constructors of its immediate superclass
 Mix can call Mix constructors or Dog constructors
 Mix cannot call the Object constructor

 Object is not the immediate superclass of Mix
 Mix cannot call PureBreed constructors

 cannot call constructors across the inheritance hierarchy
 PureBreed cannot call Komondor constructors

 cannot call subclass constructors

24

Constructors & Overridable Methods
 if a class is intended to be extended then its

constructor must not call an overridable method
 Java does not enforce this guideline

 why?
 recall that a derived class object has inside of it an object of

the superclass
 the superclass object is always constructed first, then the

subclass constructor completes construction of the subclass
object

 the superclass constructor will call the overridden version
of the method (the subclass version) even though the
subclass object has not yet been constructed

25

Superclass Ctor & Overridable Method
public class SuperDuper
{
 public SuperDuper()
 {
 // call to an over-ridable method; bad
 this.overrideMe();
 }

 public void overrideMe()
 {
 System.out.println("SuperDuper overrideMe");
 }
}

26

Subclass Overrides Method
public class SubbyDubby extends SuperDuper {

 private final Date date;

 public SubbyDubby()

 { super(); this.date = new Date(); }

 @Override public void overrideMe()

 { System.out.print("SubbyDubby overrideMe : ");

 System.out.println(this.date); }

 public static void main(String[] args)

 { SubbyDubby sub = new SubbyDubby();

 sub.overrideMe(); }

}

27

 the programmer's intent was probably to have the
program print:

SuperDuper overrideMe
SubbyDubby overrideMe : <the date>

or, if the call to the overridden method was intentional
SubbyDubby overrideMe : <the date>
SubbyDubby overrideMe : <the date>

 but the program prints:

SubbyDubby overrideMe : null
SubbyDubby overrideMe : <the date>

28

final attribute in
two different states!

What's Going On?
1. new SubbyDubby() calls the SubbyDubby

constructor
2. the SubbyDubby constructor calls the SuperDuper

constructor
3. the SuperDuper constructor calls the method

overrideMe which is overridden by SubbyDubby
4. the SubbyDubby version of overrideMe prints the

SubbyDubby date attribute which has not yet been
assigned to by the SubbyDubby constructor (so date is
null)

5. the SubbyDubby constructor assigns date
6. SubbyDubby overrideMe is called by the client

29

 remember to make sure that your base class

constructors only call final methods or private
methods
 if a base class constructor calls an overridden method, the

method will run in an unconstructed derived class

30

Other Methods
 methods in a subclass will often need or want to call

methods in the immediate superclass
 a new method in the subclass can call any public or
protected method in the superclass without using any
special syntax

 a subclass can override a public or protected
method in the superclass by declaring a method that
has the same signature as the one in the superclass
 a subclass method that overrides a superclass method can

call the overridden superclass method using the super
keyword

31

Dog equals
 we will assume that two Dogs are equal if their size

and energy are the same

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if(obj != null && this.getClass() == obj.getClass())

 {

 Dog other = (Dog) obj;

 eq = this.getSize() == other.getSize() &&

 this.getEnergy() == other.getEnergy();

 }

 return eq;

}

32

Mix equals (version 1)
 two Mix instances are equal if their Dog subobjects are

equal and they have the same breeds

@Override public boolean equals(Object obj)

{ // the hard way

 boolean eq = false;

 if(obj != null && this.getClass() == obj.getClass()) {

 Mix other = (Mix) obj;

 eq = this.getSize() == other.getSize() &&

 this.getEnergy() == other.getEnergy() &&

 this.breeds.size() == other.breeds.size() &&

 this.breeds.containsAll(other.breeds);

 }

 return eq;

}
33

subclass can call
public method of
the superclass

Mix equals (version 2)
 two Mix instances are equal if their Dog subobjects are

equal and they have the same breeds
 Dog equals already tests if two Dog instances are equal
 Mix equals can call Dog equals to test if the Dog subobjects

are equal, and then test if the breeds are equal
 also notice that Dog equals already checks that the

Object argument is not null and that the classes are
the same
 Mix equals does not have to do these checks again

34

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if(super.equals(obj))

 { // the Dog subobjects are equal

 Mix other = (Mix) obj;

 eq = this.breeds.size() == other.breeds.size() &&

 this.breeds.containsAll(other.breeds);

 }

 return eq;

}

35

subclass method that overrides a superclass
method can call the overridden superclass method

Dog toString

@Override public String toString()

{

 String s = "size " + this.getSize() +

 "energy " + this.getEnergy();

 return s;

}

36

Mix toString

@Override public String toString()

{

 StringBuffer b = new StringBuffer();

 b.append(super.toString());

 for(String s : this.breeds)

 b.append(" " + s);

 b.append(" mix");

 return b.toString();

}

37

Dog hashCode

// similar to code generated by Eclipse

@Override public int hashCode()

{

 final int prime = 31;

 int result = 1;

 result = prime * result + this.getEnergy();

 result = prime * result + this.getSize();

 return result;

}

38

Mix hashCode

// similar to code generated by Eclipse

@Override public int hashCode()

{

 final int prime = 31;

 int result = super.hashCode();

 result = prime * result + this.breeds.hashCode();

 return result;

}

39

Mix Memory Diagram

40

500 Mix object

size 5

energy 5

breeds 1750

•inherited from superclass
•private in superclass
•not accessible by name to Mix

Mix UML Diagram

41

Dog

Mix

1

ArrayList<String>

breeds

	Inheritance
	Inheritance
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Some Definitions
	Why Inheritance?
	Is-A
	Is-A Pitfalls
	Circle is-a Ellipse?
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Implementing Inheritance
	Dog
	Slide Number 16
	What is a Subclass?
	Constructors of Subclasses
	Mix (version 1)
	Slide Number 20
	Mix (version 2)
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Constructors & Overridable Methods
	Superclass Ctor & Overridable Method
	Subclass Overrides Method
	Slide Number 28
	What's Going On?
	Slide Number 30
	Other Methods
	Dog equals
	Mix equals (version 1)
	Mix equals (version 2)
	Slide Number 35
	Dog toString
	Mix toString
	Dog hashCode
	Mix hashCode
	Mix Memory Diagram
	Mix UML Diagram

