4	_ 5				B 16	198	レ 美	10.00	10 10	J BR LATER MADE
		τ	一瓶	Er .	T.T.	10	美 🛛 🚟	TRN Z	4	
2	10	吾)	0	は海ョ	-	Ø	12	1 0	1 7 8 E	THE HE ALS
	T	<u>×</u> (ン観		D =	を日会	8	E E F E	85 L F
A		M 4	FP ⁰	開会	N S	M _ 1	TH	1 1 m	· · · · · · · · · · · · · · · · · · ·	て 、 で し 技
Μ	S	22	🗣 🐲 E 🗉	17		Ŷ.	L.	0 3	DC Y	写P S A び
	I	199	EN	*L	E F	-	3 2			安2 1 甲
E	Т	52	7英	12.12	F H H	6	I +#	sm Ø	a 15 1	新生 一 王
		125	1.12		1 T	62	- 65	n a T B	S R 14	A state

$-C-OMFUTER = -OR-GANIZATION \\ (C-S-E=-2021)$

HUGH=CHESSER CSEB=1012U

	5	8.0	R	Î	0 8		8	
		W.		40 M		1 44	T I	
		E Ö		D	R .	Ó	A M	
T	5	T	Ţ	5		E	Û	
						1		
開出	-	び技	学印	東と	記録	HTS	ト社開	
*	8	10	>	9	- 146			
		11 22	ų n		2		(j) (j)	
		A T	Μ	E	Y			
٦Ľ	16	致愚	in Bu	0.	國出	招す	UF .	
P		1	00		2			
Å		111	T)	5	R		U S	
R			E.	A G	N		E 0/1	
学		1111	6 	1	5		2 2	
1		Þ	B.	'n.	D.	ਨ	X	H H
*	T Z	I DD	I DANK	a 🙀	u F	U U	「字」	1 A B
O Y	5 \$	T L L	SUPA SUPA	E BE	ENCE	H# X	T I	W I A N
2		V	*	美し	E.	ill R	下社	なっ
		8	1×jR	T I		F	v 0	8
		G	EN		0		D	
		2	5E			5F	1	
Τ₩	-1 \.	69	び技す	即	2	義	19	社明
/	7-		O N		i.	E a		т.
			EF U	7	ji ji	をに		h

Agenda

- Introduction to course
- Context
 - Hardware Integrated Circuits (IC's)
 - Software Assembly Language

Reading: Patterson, Sections 1.1 - 1.3.

CSE 2021: Computer Organization Section E

Course URL:	http://www.cse.yorku.ca/course_archive/2010-11/F/2021/
Text:	D. A. Patterson and J. L. Hennessey, Computer Organization and Design, San Francisco, CA: Morgan Kaufmann Publishers, Inc., 4 th edition (2009)
Class Schedule:	MW 17:30 – 19:00, SLH E
Office Hours:	Instructor: CSEB 1012U, T, R 10 – 12 or by appointment Teaching Assistants: TBA
Laboratory: Lab Schedule: Lab Tools:	CSE 1006 Lab 01 M, Lab 02 T, 19:00 – 22:00 – NOT every week – see course calendar SPIM (QtSpim), Icarus Verilog, Crimson editor – all may be downloaded for free - see course web site for links to download
Assessment:	Quizzes: 12% (3 Quizzes @4% each) Lab Exercises: 32% (8 Labs A-D, K-N @4% each) Mid-term Exam: 20% Final Exam: 36%

Rough Course Schedule

- Two halves to the course:
- Software
- Hardware

WEEK	WEEK OF	Mon	Wed	Lab	Торіс
1	Sep 05	-		-	Overview of the course
2	Sep 12			-	Performance and Data Translation
3	Sep 19			A	Code Translation
4	Sep 26		Quiz #1	В	Translating Utility Classes
5	Oct 03			С	Translating Objects
6	Oct 10	-	-	-	READING WEEK - No Classes
7	Oct 17		Mid-term	D	Introduction to Hardware
8	Oct 24			Make-up Labs	Machine Language + Floating-Point
9	Oct 31			K	The CPU Datapath
10	Nov 07		Quiz #2	L	The Single-Cycle Control
11	Nov 14			М	Pipelining
12	Nov 21			N	Caches
13	Nov 28		Quiz #3	Make-up Labs	
14	Dec 05		-	-	No lecture on Wednesday

Important Dates

- Mid-term is Wed Oct 19 in SLH E.
- The Drop Deadline is Nov 11.
- There will be a final exam held during the exam period TBA.

wl-w

Computer Hardware Architecture – High Level

Hardware Elements: Computer, Monitor, Keyboard, Mouse, Network, ...

The components and how they interconnect can be said to constitute a level of abstraction

Our course will deal with a lower level of abstraction of the computer than shown here

Inside a PC – High Level Computer Architecture

PC consists of a motherboard (CPU, onboard memory, i/o devices), hard disk, floppy drives, power supply, and connectors.

...again we'll be talking about a lower level of abstraction in the course...

wl-w

Inside a PC: Motherboard

Inside a PC: CPU

CPU comprises of two main components:

1. Datapath: consists of Data and instruction cache, Bus, and integer and floating point data path. The latter performs integer and floating point arithmetic operations

2. Control: tells the datapath memory and I/O devices what to do based on the program

٣ŗ

FET Transistor

- Basic element of any digital circuit
- Logic gates (and, or, not, etc) are made from FETs
- Memory locations
- Our course deals with hardware at a higher level of abstraction – gates vs. transistors

Source: http://www.youtube.com/watch?v=J8ZPIDNaijs&list=PL46840EB0E725FB91&index=1&feature=plpp

VLSI "Chip" Manufacturing

Transistor Section

- Very Large Scale Integrated circuits – billions used in a typical modern circuit
- Several processes involved – photolithography is a key one
- Circuits (transistors, diodes, caps) are built up in layers

Decent video of overall manufacturing stages: http://www.youtube.com/watch?v=i8kxymmjdoM&playnext=1&list=PLEE0AFF3FAD430277

Video of layering stages (part 2 of 3): http://www.youtube.com/watch?v=wXVpQipeEh8&feature=related

Innovation (2)

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Moore's Law: "The transistor density on integrated circuits doubles every couple of years." This exponential growth and evershrinking transistor size has resulted in increased performance with decreased cost.

Source:

٦.

-w1-w

Field Programmable Gate Arrays

- We will be learning "Verilog" to describe the behaviour of a desired logic circuit – an example of a Hardware Description Language (HDL)
- Technology behind for "Soft processing" and "System on a Chip" (SOC)
- A type of Integrated Circuit that the user can configure or define
- Subtly different than traditional programming more on this later

Binary Digits (Bits)

- Communication between different components of a computer takes place in terms of *on* and *off* electrical signals
- Symbols used to represent these electrical states are the numbers 1 and 0; binary digit 1 corresponding to high voltage and binary digit 0 corresponding to low voltage

 All operations and data inside a computer are expressed in terms of the binary digits or bits

Instructions

- Instructions: are commands given to a computer to perform a particular task. Example: Addition of variables A and B High Level Language: (A + B)Binary notation for the add operation: 100011001010000
- Binary machine language program: is a one-to-one binary representation of a program written in a high level language.
- Clearly, binary machine language programs are tedious to write and debug.
- Instead a symbolic notation is used as an intermediate step between the high level language and its binary representation. This symbolic notation is referred to as the assembly language.

0

Example: Addition of variables A and E	3
High Level Language:	(A + B)
Assembly Language:	add A,B
Binary notation for the add operation:	100011001010000

Levels of Programming

High-level

language

Assembly

language

(for MIPS)

program

program

(in C)

Why use High-level Language?

- 1. Ease in writing & debugging
- 2. Improved productivity
- 3. HW independence

Compiler: converts a program written in high-level language into its equivalent symbolic assembly language representation.

Assembler: translates assembly language into the binary machine language.

Binary machine language program (for MIPS)

swap(intv[], intk)

{int tem p:

Iw \$15, 0(\$2)
Iw \$16, 4(\$2)
sw \$16, 0(\$2)
sw \$16, 0(\$2)
sw \$15, 4(\$2)
jr \$31

Instruction Set (1)

- Computer Architecture = Instruction Set Architecture + Machine Organization
- Machine Organization: Ways in which different computer components (Registers, ALU, Shifters, Logic Units, ...) are interconnected.
- Recall instructions are commands given to a computer to perform a particular task.
- Instruction Set: is a collection / library of instructions that a computer can execute.

Instruction Set (2)

- Programs written for a computer can only use the instructions provided in its instruction set.
- Examples of modern instruction set architectures (ISA's):
 - 1. 80x86/Pentium/K6/MMX (Intel, 1978-96)
 - 2. Motorola 68K (Motorola, late 1980, s, early 1990's)
 - 3. MIPS (SGI, 1986-96) I, II, III, IV, V
 - 4. SPARC (Sun, 1987-95) v8, v9
 - 5. ARM (ARM Ltd, 1992-96) ARMv6, ARMv7TDMI
- Instructions in the MIPS instruction set can be divided in five categories:
 - 1. Arithmetic operations: add, sub(subtract), mult(multiply), div (division), etc.
 - 2. Logical operations: and, or, sll (shift left logical), etc.
 - 3. Data Transfer: lw (load), sw (save), etc.
 - 4. Conditional branch: beq(branch if equal), slt set if less than), etc.
 - 5. Unconditional branch: j (jump), etc.

Question: Will the ISA developed on one machine be compatible with another machine of a different manufacturer?

Where are we headed?

- Performance issues (Chapter 1.4 1.8) vocabulary and motivation
- MIPS instruction set architecture (Chapter 2)
- Arithmetic and how to build an ALU (Chapter 3)
- Constructing a processor to execute our instructions (Chapter 4)
- Pipelining to improve performance (Chapter 4)
- Memory: caches and virtual memory (Chapter 5)