
W11-W

HUGH CHESSER
CSEB 1012U

CSE 2021
COMPUTER ORGANIZATION

HUGH CHESSER
CSEB 1012U

W11-M 2

Pipelining with Single Cycle Datapath (2)

Instruction
fetch Reg ALU Data

access Reg

800 ns
Instruction

fetch Reg ALU Data
access Reg

800 ns
Instruction

fetch

 800 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

200 400 600 800 1000 1200 1400 1600 1800

200 400 600 800 1000 1200 1400

...

Program
execution
order
(in instructions)

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

200 ns
Instruction

fetch Reg ALU Data
access Reg

200 ns
Instruction

fetch Reg ALU Data
access Reg

200 ns 200 ns 200 ns 200 ns 200 ns

Program
execution
order
(in instructions)

Non-pipelined Execution

Pipelined Execution

W11-W 3

Pipelining with Single Cycle Datapath (3)

— Speedup obtained through pipelining equals the number of pipe stages if execution time
of each stage is the same.

— In our previous example, speedup should be 5.

Actual speedup in our previous example = 2400 / 1400 = 1.71
Why? Number of instructions are too small.
Increase the number of instructions to 1003.
Then speedup = (1003 × 800)/(200 × 1003 + 800) = 802400/201400 = 3.98

— Pipelining added some overhead (additional 100ps for Register read)
— Note that pipelining increases the overall throughput. The execution time for each

instruction stays the same.

W11-W 4

Graphical Representation

1. Shading in each block indicates what the element is used for in the instruction.
2. Shading on the left half of the block indicates that the element is being written. During

instruction fetch, the instruction memory is read so the right half of IF block is shaded.
3. Shading on the right half of the block indicates that the element is being read. During

write back stage, the register file is written so the left half of the WB block is shaded.

Time
2 4 6 8 10

add $s0, $t0, $t1 IF ID WBEX MEM

Instruction
fetch from

instruction memory

Instruction Decode /
Register Read

Execute Memory
Read/Write

Write Back
stage into the

register file

W11-W 5

Activity 2

Using the graphical representation, show that the following swap procedure has a pipeline
hazard. Reorder the instructions to avoid pipeline stalls.

lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

$t0 loaded

$t2 loaded

lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t0, 4($t1)

sw $t2, 0($t1) $t2 stored

$t0 stored

W11-W 6

Agenda

Topics:
1. Pipeline Datapath and Control

Patterson: 4.5

W11-W 7

Pipelined Datapath (1)

ID: Instruction Decode /
Register file read

EX: Execute /
Address Calculation

MEM: Memory
Access

WB: Write
back

IF: Instruction Fetch

W11-W 8

Pipelined Datapath (2)

— In pipelined datapath, each instruction is broken in five steps:
IF (Instruction Fetch), ID (Instruction Decode and register file read), EX (Execution or
address calculation), MEM (Data Memory Access), and WB (Write Back).

— Each of the above step takes one clock cycle.
— Instructions and data advance forward by from left to right.
— Data flows from right to left only in two cases

1. Write back stage placing the data in the register file
2. Selection of the value for PC between (PC + 4) and branch target address

— Registers in between different stages store the store values to be used by next stage
— Name of registers are based on the two pipelined stages that the registers separate
— Each pipelining register has a different size: IF/ID register is 64 bits wide; ID/EX register is

128 bits wide; EX/MEM register is 97 bits wide; and MEM/WB is 64 bits wide
— There are no pipeline registers at the end of the write-back stage as data is written directly

into memory or register file or the PC.

W11-W 9

How pipelining works (1): Example lw $s1, 0($s2)

IF: Instruction Fetch

Datapath for Instruction Fetch (IF)

W11-W 10

How pipelining works (2): Example lw $s1, 0($s2)

ID: Instruction Decode /
Register file read

Datapath for Instruction Decode and Register File Read (ID)

W11-W 11

How pipelining works (3): Example lw $s1, 0($s2)

EX: Execute /
Address Calculation

Datapath for Execute / Address Calculation (EX)

W11-W 12

How pipelining works (4): Example lw $s1, 0($s2)

MEM: Memory Access

Datapath for Memory Access (MEM)

W11-W 13

How pipelining works (5): Example lw $s1, 0($s2)

WB: Write back

Datapath for Write Back (WB)

W11-W 14

How pipelining works (6): Example lw $s1, 0($s2)

ID: Instruction Decode /
Register file read

EX: Execute /
Address Calculation

MEM: Memory Access WB: Write back
IF: Instruction Fetch

Complete Datapath for lw instruction

W11-W 15

Multiple Clock Cycle Pipeline Diagram

IM Reg DM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $s1, 0($s2)

Program
execution
order

ALU

IF/ID EX/MEM MEM/WBID/EX

Instruction
fetch

Instruction
decode

Execution
Data

access
Write back

Activity 3: Using the graphical representation, show that the multiple clock cycle
pipeline diagram of the following two instructions

lw $t0,0($t1)
sub $s0,$s1,$s2

W11-W 16

Pipelined Control (1)

W11-W 17

Pipelined Control (2)

— Control lines in pipelined implementation are divided into five groups according to the
pipeline stage

1. Instruction Fetch: No control needed as the “write control” of PC and “read control” of
instruction memory is always asserted.

2. Instruction Decode/Register File Read: No controls needed as the register file in being read
during each instruction.

3. Execution/Address Calculation: Control signals are ALUSrc, RegDst, and ALUOp.
For lw/sw instructions, ALUSrc = 1, RegDst = 0 and ALUOp = 00. For R-type instructions,
ALUSrc = 0, RegDst = 1, and ALUOp = 10.

4. Memory Access: Control signals are Branch, MemWrite, and MemRead. For lw instruction,
MemRead = 1 and Branch = MemWrite = 0. For sw instruction, MemWrite = 1 and Branch
= MemRead = 0. For branch instructions, Branch = 1 and Memwrite = MemRead = 0. For
R-type instructions, Branch = MemWrite = MemRead = 0.

5. Write Back: Control signals are MemtoReg. For lw instructions, MemtoReg = 1. For R-type
instructions, MemtoReg = 0.

— Pipeline registers are extended to include the control signals for each stage of an instruction.

W11-W 18

Activity 4

Show the following instructions going through the pipeline:
lw $10, 20($1)
sub $11,$2,$3
and $12,$4,$5
or $13,$6,$7
and $14,$8,$9

W11-W 19

Activity 4: Clock Cycle # 1

IF/ID EX/MEMID/EX

ID : before<1> EX : before<2> M E M : be fore<3> W B: before <4 >

MEM/WB

IF : lw $10, 20($1)

C lo ck 1

	Slide 1
	Pipelining with Single Cycle Datapath (2)
	Pipelining with Single Cycle Datapath (3)
	Slide 4
	Slide 5
	Agenda
	Pipelined Datapath (1)
	Pipelined Datapath (2)
	How pipelining works (1): Example lw $s1, 0($s2)
	How pipelining works (2): Example lw $s1, 0($s2)
	How pipelining works (3): Example lw $s1, 0($s2)
	How pipelining works (4): Example lw $s1, 0($s2)
	How pipelining works (5): Example lw $s1, 0($s2)
	How pipelining works (6): Example lw $s1, 0($s2)
	Multiple Clock Cycle Pipeline Diagram
	Pipelined Control (1)
	Pipelined Control (2)
	Activity 4
	Activity 4: Clock Cycle # 1

