

-C-SE==2021== -C-O-MFUTE-R==-O-R-GANIZATIO-N

Ŧ	յլ Հ		FI TE	<u>}</u>	- -	C]	<u> </u> _ 2]	15 E	5-5 U-	Ē		N Y U T U T N I N	POLIDEN:	と 呆の 文積なフ			1077001 200301	文精なフ ト社明	北京二名町・丁	at veam 6
T	M	u e	ト社明		gn Gr		び技	N H	S O	2 文師		TI		× ±1	0		F.	をに	1. I. I.	
T	20 0	D	を見	1-10	>		1		I A	ロなっ	EC u B	t 1	×	アモ	I I	direct of	эŧ,	Ł	Y	
ER	L D	a u	美と	in Chi	ĦÉ		出のい		I A S G	14	H 1 *	E	行	に更い	N N	0		爭	N N N	
E		I	学印	>	ų n	М	8	00	T E	明	BIT			* 1×	D ZE		5E	び技力	ON	
P W H	E O	T	び技	HE.	21 10	A T	い 単 サ	I II	T	をに美	P S	1	T B A			G	8	8		
E E N		-1 52	す国	a 3					T	と字	Ť H		1				- W	14-]	M	

D R

Agenda

Topics:

- 1. Memory Access
- 2. Review of Course Material

Patterson: 5.2, Appendix C.8, C.9

Accessing Memory

SRAM – Static Random Access Memory

- State saved in Flip-flop devices, same as the register file
- Addressing is somewhat different than decoders used for register file

Review - Register File Write

- Write Operation:
- Register number of the register to be written is one input (WriteAddr bus)
- Data to be written is the second input (WriteData bus)
- Clock that controls the write operation is the third input
- Decoders are used in the write operation

Review - Register File Read

Read Operation:

"[

- Register number (address) of the register to be read is provided as input
- Content of the read register is the output of the register file
- Multiplexers (2 stages) are used in the read operation

SRAM Memory Access

Read/Write Operations:

- Tri-state buffer
- Allows more that one memory cell to share the same output line

0

Ζ

1

0

SRAM Datasheet

Austin Semiconductor, Inc. reserves the right to change products or specifications without notice.

Two stage Decoding Example 4M x 8 SRAM

C

۳**۲**

Error Correction Codes

- Hamming codes (bit errors) or Reed-Solomon codes (multiple bits) typically used for memory checking after reads
- Based on the concept of parity even and odd – bits are Xor'd together
- Using multiple parity bits allows bits in error to be identified and corrected

Encoding Methods

- Forward Error Correction a.k.a.
- Error Detection and Correction of Data Errors (see http://en.wikipedia.org/wiki/Error_correcting_code)

EDAC Method

Parity

Cyclic Redundancy Check (CRC)

Hamming Code

Reed-Solomon Code

Convolutional Code

EDAC Capability

Single bit error detect

Detects if any errors have occurred in a given structure

Single bit correct, double bit detect

Corrects multiple and consecutive bytes in error

Corrects isolated burst noise in a communication stream

<u>−</u>D-₽

Exam Study Suggestions

Do practice questions! Do NOT simply read the textbook

Questions are available in the back of the chapters:

- Chapters 1, 2, 3, 4, 5 (up to and including section 5.2),
 Appendix B, C.1 C.10, D.3 I have some solutions if stuck
- Practice with spim and iVerilog

Chapter 1 – Computer Terminology, Abstractions

- Instruction set architecture
- Computer performance measures, benchmarks

Chapter 2 – Assembly Instructions

- MIPS assembly language introduction (details in Appendix B)
- Machine code
- Real, signed/unsigned number and character representations

Chapter 3 – Computer Arithmetic

- Integer addition, subtraction, multiplication, division
- Floating point not so much

Chapter 4 – Processor Architecture

- Building blocks logic gates, latches, flip flops
- Components ALU, Register file, program counter, memory
- Single cycle implementation
- Multi-cycle implementation
- Pipeline implementation control, data hazards

Chapter 5

- Memory technologies and hierarchy
- Caches

Appendices, Labs

- Appendix B MIPS assembly and SPIM simulator details
- Appendix C Logic design details
- Appendix D Control Finite state machine implementation
- Labs A D MIPS programming
- Labs K N Verilog design