

Floating Point Instructions

Category	Instruction	Example	Meaning	Comments
Arithmetic	FP add single	add.s \$f2, \$f4,\$f6	\$f2 \leftarrow \$ $54+\$ \mathrm{f} 6$	Single Prec.
	FP subtract single	sub.s \$f2, \$f4,\$f6	\$f2 \leftarrow \$ $54-\$ \mathrm{f} 6$	Single Prec.
	FP multiply single	mul.s \$f2, \$f4,\$£6	\$f2 \leftarrow \$ $\mathrm{f} 4 \times \$ \mathrm{f} 6$	Single Prec.
	FP divide single	div.s \$f2, \$f4,\$f6	\$f2 \leftarrow \$ $4 / \$ \mathrm{f} 6$	Single Prec.
	FP add double	add.d \$£2,\$f4,\$£6	\$f2 \leftarrow \$ $\mathrm{f} 4+\$ \mathrm{f} 6$	Double Prec.
	FP subtract double	sub.d \$£2,\$f4,\$£6	\$f2 \leftarrow \$ $54-\$ \mathrm{f} 6$	Double Prec.
	FP multiply double	mul.d \$f2, \$f4,\$f6	\$f2 \leftarrow \$ $\mathrm{f} 4 \times \$ \mathrm{f} 6$	Double Prec.
	FP divide double	div.d \$f2, \$f4,\$f6	\$£2 ¢ \$ $4 / \$ \mathrm{f} 6$	Double Prec.
Data Transfer	load word FP Single	lwc1 \$f2,100 (\$s2)	\$f2 $\leftarrow \operatorname{Mem}[\$ \mathrm{~s} 2+100]$	Single Prec.
	store word FP Single	swc1 \$f2,100 (\$s2)	Mem $[\$ s 2+100] \leftarrow \$ £ 2$	Single Prec.
Conditional branch	FP compare single (eq, ne, lt, le, gt, ge)	c.lt.s \$f2,\$f4	$\begin{gathered} \text { if }(\$ f 2<\$ f 4) \text { cond }=1, \\ \text { else cond }=0 \end{gathered}$	Single Prec.
	FP compare double (eq, ne, lt, le, gt, ge)	c.lt.d \$f2,\$f4	$\begin{gathered} \text { if }(\$ f 2<\$ f 4) \text { cond }=1, \\ \text { else cond }=0 \end{gathered}$	Double Prec.
	Branch on FP true	bc1t 25	if cond==1 go to $P C+100+4$	Single/ Double Prec.
	Branch on FP false	bc1f 25	$\begin{aligned} & \text { if } \text { cond=}=0 \text { go to } \\ & \text { PC+100+4 } \end{aligned}$	Single/ Double Prec.
W $5-\mathrm{M}$				2

Example

```
# calculate area of a circle
            .data
Ans: .asciiz "The area of the circle is: "
Ans_add: .word Ans # Pointer to String (Ans)
Pi: .double 3.1415926535897924
Rad: .double 12.345678901234567
Rad_add: .word Rad # Pointer to float (Rad)
    .text
main: lw $a0, Ans_add($0)
        addi $v0, $0, 4
        syscall
#----------------
    la $s0, Pi
    ldc1 $f2, 0($s0)
#----------------
    lw $s0, Rad_add($0)
    ldc1 $f4, 0($s0)
    mul.d $f12, $f4, $f4
    mul.d $f12, $f12, $f2
    addi $v0, $0, 3 # Sys Call 3 (Print Double)
```

 syscall
 exit: jr \$ra

Agenda for Today

1. Floating Point - Round off
2. Introduction to Hardware - Logic Design

Patterson: Section 3.5, Appendix C

Floating Point Round off

- Floating Point arithmetic operations can lead to overflow (like integer arithmetic) and underflow
- Overflow - value is too large to be represented by the precision chosen (single or double)
- Underflow - value is too small to be represented by the precision chosen
- This situation leads to an exception - program/user is alerted (usually by an error message)
- What happens when the answer takes on a value that is between the floating point values that can be represented?

Example - Floating Point Addition

Add: $9.999_{\text {ten }} \times 10^{1}$ and $1.610_{\text {ten }} \times 10^{-1}$ (assume 3 digits of precision only)
 $$
\begin{aligned} & 9.99900 \times 10^{1} \\ & \underline{0.01610 \times 10^{1}} \end{aligned}
$$

$$
10.01510 \times 10^{1}=1.00151 \times 10^{1}=1.002 \times 10^{1}
$$

IEEE 754 specifies three extra digits for representation of FP calculations - "guard" and "round" -2 bits used for multiplication operation

- >50 - round up, <50 round down, $=50$?

Rounding modes: always round up, always round down, truncate, round to nearest even

Third bit - "sticky" - set when there are digits to the right of the round bit

Hardware - Logic Design

- Appendix C goes through the basics of logic devices and how they implement the instructions we have been talking about
- Reference is made to the "Verilog" hardware description language (HDL)
- HDL - allows the "designer" (not programmer) to configure all of the programmable logic gates in a FPGA, ASIC or similar device
- HDL is "synthesized" (not compiled) to give a "netlist" (not machine code) which is downloaded to the device
- As the name suggests, HDL describes how the resulting logic circuits will manipulate "signals" (not variables)

Logical Operations: AND, OR, NOT, Multiplexer

1. AND Gate:

\boldsymbol{a}	\boldsymbol{b}	$\boldsymbol{c}=\boldsymbol{a} \cdot \boldsymbol{b}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

2. OR Gate

Symbol
$c=a+b$
Notation

\boldsymbol{a}	\boldsymbol{b}	$\boldsymbol{c}=\boldsymbol{a}+\boldsymbol{b}$	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	
Truth Table			

Logical Operations: AND, OR, NOT, Multiplexer

3. NOT Gate (Inverter):

Symbol

$$
(c=\bar{a})
$$

Notation

a	c
0	1
1	0

Truth Table
4. Multiplexer

Symbol
if ($\mathrm{S} 0==0$), $\mathrm{c}=\mathrm{D} 0$; else $\mathrm{c}=\mathrm{D} 1$;

$S 0$	c
0	$D 0$
1	$D 1$

Truth Table
Notation

Boolean Algebra (1)

1. Logic Operations can be expressed in terms of logic equations

2. For the above figure, the output $C=A B+A \bar{B}$
3. To implement the above digital circuit, 2 AND, 1 NOT and 1 OR gates are required
4. Can we simplify the above circuit?

Boolean Algebra (1)

		Expressions
Identity Law		$A+0=A$
		$A \cdot \mathbf{1}=\boldsymbol{A}$
(1) Zero and One Law		$A+1=1$
		$\boldsymbol{A} \cdot 0=0$
Inverse Law		$A+\bar{A}=1$
		$\bar{A} \cdot 0=0$
7	Commutative law	$\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A}$
		$\boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{B} \cdot \boldsymbol{A}$
15	Associative Law	$A+(B+C)=(A+B)+C$
		$\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{C})=(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C}$
5	Distributive Law	$A \cdot(B+C)=(A \cdot B)+(A \cdot C)$
		$A+(B \cdot C)=(A+B) \cdot(A+C)$
	DeMorgan Law	$\overline{(A+B)}=\bar{A} \cdot \bar{B}$
		$\overline{(A \cdot B)}=\bar{A}+\bar{B}$

Boolean Algebra (2)

Activity 1 :
Simplify the expressions:
(a) $\bar{A} B+A B C+A B \bar{C}$
(b) $\bar{x} y z+x z$
(c) $(\bar{x}+\bar{y})(x+y)$
(d) $x y+x(w z+w \bar{z})$
(e) $(B \bar{C}+\bar{A} D)(A \bar{B}+C \bar{D})$

Activity 2 :
Implement simplified expressions for (a) - (e) using OR, AND, and NOT gates

Combinational Logic: Design of a 1-bit adder (1)

Example: Design an 1-bit adder with Carry-in
Step 1: Construct the truth table for an 1-bit adder
3 binary inputs imply $\left(2^{3}=8\right)$ entries in the truth table

INPUTS			OUTPUTS	
A0	B0	CI (Carry-In)	CO (Carry-Out)	S0 (Sum)
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Truth Table for 1-bit adder
Schematic of a 1-bit adder

Combinational Logic: Design of a 1-bit adder (2)

Step 2: Derive the Boolean expression for each output from the truth table

INPUTS			OUTPUTS	
a	b	c (Carry-In)	Carry-Out	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sum $=\bar{a} \bar{b} c+\bar{a} b \bar{c}+a \bar{b} \bar{c}+a b c$
Carry-Out $=\bar{a} b c+a \bar{b} c+a b \bar{c}+a b c$

Combinational Logic: Design of a 1-bit adder (3)

Step 3: Simplify the Boolean expression

$$
\text { Carry-Out }=\bar{a} b c+a \bar{b} c+a b \bar{c}+a b c=b c+a c+a b
$$

Step 4: Implement the simplified Boolean expression using OR, AND, and NOT gates

Activity: Implement the hardware for the Sum output of the 1-bit adder

