

HUGH CHESSER CSEB 1012U

₩5-M

Floating Point Instructions

Category	Instruction	Example	Meaning	Comments
	FP add single	add.s \$f2,\$f4,\$f6	\$f2 ← \$f4+\$f6	Single Prec.
	FP subtract single	sub.s \$f2,\$f4,\$f6	\$f2 ← \$f4-\$f6	Single Prec.
	FP multiply single	mul.s \$f2,\$f4,\$f6	\$f2 ← \$f4×\$f6	Single Prec.
A: 4la 04: 0	FP divide single	div.s \$f2,\$f4,\$f6	\$f2 ← \$f4/\$f6	Single Prec.
Arithmetic	FP add double	add.d \$f2,\$f4,\$f6	\$f2 ← \$f4+\$f6	Double Prec.
	FP subtract double	sub.d \$f2,\$f4,\$f6	\$f2 ← \$f4-\$f6	Double Prec.
	FP multiply double	mul.d \$f2,\$f4,\$f6	\$f2 ← \$f4×\$f6	Double Prec.
	FP divide double	div.d \$f2,\$f4,\$f6	\$f2 ← \$f4/\$f6	Double Prec.
Data Transfer	load word FP Single	lwc1 \$f2,100(\$s2)	\$f2 ← Mem[\$s2+100]	Single Prec.
Data Transfer	store word FP Single	swc1 \$f2,100(\$s2)	Mem[\$s2+100] ← \$f2	Single Prec.
	FP compare single (eq, ne, lt, le, gt, ge)	c.lt.s \$f2,\$f4	if(\$f2<\$f4)cond = 1, else cond = 0	Single Prec.
Conditional	FP compare double (eq, ne, lt, le, gt, ge)	c.lt.d \$f2,\$f4	if(\$f2<\$f4)cond = 1, else cond = 0	Double Prec.
branch	Branch on FP true	bc1t 25	if cond==1 go to PC+100+4	Single/ Double Prec.
	Branch on FP false	bc1f 25	if cond==0 go to PC+100+4	Single/ Double Prec.

_₩-5-]M⁻

Example

```
# calculate area of a circle
         .data
        .asciiz
                 "The area of the circle is: "
Ans:
Ans add: .word
                                                  # Pointer to String (Ans)
                     Ans
Pi:
        .double 3.1415926535897924
Rad:
        .double
                12.345678901234567
Rad add: .word
                 Rad
                                                  # Pointer to float (Rad)
        .text
        lw $a0, Ans add($0)
                                                  # load address of Ans into $a0
main:
        addi $v0, $0, 4
                                                  # Sys Call 4 (Print String)
        syscall
                                                  # load float (Pseudoinstruction)
        la $s0, Pi
                                                  # load address of Pi into $s0
        ldc1 $f2, 0($s0)
                                                  # $f2 = Pi
                                                  # load float (MIPS Instruction)
        lw $s0, Rad add($0)
                                                  # load address of Rad into $s0
        ldc1 $f4, 0($s0)
                                                  # $f4 = Rad
        mul.d $f12, $f4, $f4
        mul.d $f12, $f12, $f2
        addi $v0, $0, 3
                                                  # Sys Call 3 (Print Double)
        syscall
exit:
        jr $ra
```

-W5-M

Agenda for Today

- 1. Floating Point Round off
- 2. Introduction to Hardware Logic Design

Patterson: Section 3.5, Appendix C

Floating Point Round off

- Floating Point arithmetic operations can lead to overflow (like integer arithmetic) and underflow
 - Overflow value is too large to be represented by the precision chosen (single or double)
 - Underflow value is too small to be represented by the precision chosen
 - This situation leads to an exception program/user is alerted (usually by an error message)
 - What happens when the answer takes on a value that is between the floating point values that can be represented?

Add: $9.999_{\text{ten}} \times 10^{1}$ and $1.610_{\text{ten}} \times 10^{-1}$ (assume 3 digits of precision

only)

 9.99900×10^{1}

 0.01610×10^{1}

$$10.01510 \times 10^{1} = 1.00151 \times 10^{1} = 1.002 \times 10^{1}$$

IEEE 754 specifies three extra digits for representation of FP calculations – "guard" and "round" – 2 bits used for multiplication operation

• > 50 – round up, <50 round down, =50?

Rounding modes: always round up, always round down, truncate, round to nearest even

Third bit – "sticky" – set when there are digits to the right of the round bit

Hardware – Logic Design

- Appendix C goes through the basics of logic devices and how they implement the instructions we have been talking about
- Reference is made to the "Verilog" hardware description language
 (HDL)
 - HDL allows the "designer" (not programmer) to configure all of the programmable logic gates in a FPGA, ASIC or similar device
 - HDL is "synthesized" (not compiled) to give a "netlist" (not machine code) which is downloaded to the device
 - As the name suggests, HDL describes how the resulting logic circuits will manipulate "signals" (not variables)

₩5-]M

1. AND Gate:

$$c = a \cdot b$$
Notation

a	b	$c = a \cdot b$
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table

2. OR Gate

Symbol

$$c = a + b$$

Notation

а	b	c = a + b
0	0	0
0	1	1
1	0	1
1	1	1

Truth Table

Logical Operations: AND, OR, NOT, Multiplexer

3. NOT Gate (Inverter):

$$(c = \overline{a})$$

Notation

a	c
0	1
1	0

Truth Table

4. Multiplexer

Symbol

Notation

S0	c
0	D0
1	D 1

Truth Table

1. Logic Operations can be expressed in terms of logic equations

- 2. For the above figure, the output $C = AB + A \bar{B}$
- 3. To implement the above digital circuit, 2 AND, 1 NOT and 1 OR gates are required
- 4. Can we simplify the above circuit?

Boolean Algebra (1)

		Expressions
	Identity Law	A + 0 = A
		$A \cdot 1 = A$
Ū,	Zero and One Law	A + 1 = 1
		$A \cdot 0 = 0$
Ž .	Inverse Law	$A + \bar{A} = 1$
1/8		$\bar{A} \cdot 0 = 0$
ZΝ	Commutative law	A + B = B + A
		$A \cdot B = B \cdot A$
1	Associative Law	A + (B + C) = (A + B) + C
εĒ		$A \cdot (B \cdot C) = (A \cdot B) \cdot C$
Ž.	Distributive Law	$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$
75		$A + (B \cdot C) = (A + B) \cdot (A + C)$
	DeMorgan Law	$\overline{(A+B)} = \overline{A} \cdot \overline{B}$
30		$\overline{(A \cdot B)} = \overline{A} + \overline{B}$

Simplification Rules	
$A \cdot B + A \cdot \overline{B} = A$	
$A + \overline{A} \cdot B = A + B$	
$A + A \cdot B = A$	

Activity 1:

Simplify the expressions:

(a)
$$\overline{A}B + ABC + AB\overline{C}$$

(b)
$$\bar{x}yz + xz$$

$$(c)$$
 $(\bar{x} + \bar{y})(x + y)$

$$(d)$$
 $xy + x(wz + w\overline{z})$

(e)
$$(B\overline{C} + \overline{A}D)(A\overline{B} + C\overline{D})$$

Activity 2:

Implement simplified expressions for (a) - (e) using OR, AND, and NOT gates

Combinational Logic: Design of a 1-bit adder (1)

Example: Design an 1-bit adder with Carry-in

Step 1: Construct the truth table for an 1-bit adder

3 binary inputs imply $(2^3 = 8)$ entries in the truth table

INPUTS			OUTPUTS		
A0	В0	CI (Carry-In)	CO (Carry-Out)	S0 (Sum)	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Truth Table for 1-bit adder

Schematic of a 1-bit adder

Combinational Logic: Design of a 1-bit adder (2)

Step 2: Derive the Boolean expression for each output from the truth table

INPUTS			OUTPUTS	
a	b	c (Carry-In)	Carry-Out	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sum =
$$\bar{a} \, \bar{b} \, c + \bar{a} \, b \, \bar{c} + a \, \bar{b} \, \bar{c} + abc$$

Carry-Out = $\bar{a} \, bc + a \, \bar{b} \, c + ab \, \bar{c} + abc$

₩5-M

Combinational Logic: Design of a 1-bit adder (3)

Step 3: Simplify the Boolean expression

Carry-Out =
$$\bar{a}bc + a\bar{b}c + ab\bar{c} + abc = bc + ac + ab$$

Step 4: Implement the simplified Boolean expression using OR, AND, and NOT gates

Activity: Implement the hardware for the Sum output of the 1-bit adder

₩5-M