

Combinational Logic: Design of a 1-bit adder (2)

Step 2: Derive the Boolean expression for each output from the truth table

INPUTS		OUTPUTS		
a	b	c (CarryIn)	CarryOut	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

> Sum $=\bar{a} \bar{b} c+\bar{a} b \bar{c}+a \bar{b} \bar{c}+a b c$
> Carry-Out $=\bar{a} b c+a \bar{b} c+a b \bar{c}+a b c$

Combinational Logic: Design of a 1-bit adder (3)

Step 3: Simplify the Boolean expression

$$
\text { Carry-Out }=\bar{a} b c+a \bar{b} c+a b \bar{c}+a b c=b c+a c+a b
$$

$$
\operatorname{Sum}=(\bar{a} \bar{b}+a b) c+(a \bar{b}+\bar{a} b) \bar{c}=\overline{(a \bar{b}+\bar{a} b)} c+(a \bar{b}+\bar{a} b) \bar{c}
$$

Step 4: Implement the simplified Boolean expression using OR, AND, and NOT gates

Activity: Implement the hardware for the Sum output of the 1-bit adder

Agenda for Today

- Concerns from Prof. Roumani
- 1-bit ALU - Logic Design

Patterson: Appendix C

Prof. Roumani's Concerns

- Not enough students are doing the pre-lab activities at home and as a consequence not very many students are completing the Lab exercises on time
- If you labs have been manually marked, you can pick them up from the TA either at the next lab session or during his office hours (W 16:00 - 17:00) - NO ONE has done this
- All labs have been posted on ePost for Labs A and B. Manually marked Lab C's are to be posted in a few days

1-bit adder

- Recall the digital circuit of a 1-bit adder
- We will enhance the 1-bit adder to develop a prototype ALU for MIPS

Digital Circuit of a 1-bit adder

Schematic of a 1-bit adder

1-bit ALU with AND, OR, and Addition

- The 1-bit adder is supplemented with AND and OR gates
- A multiplexer controls which gate is connected to the output

1-bit ALU with AND, OR, and Addition capability

ALU Control Lines		Result
Carry In	Operation	
$\mathbf{0}$	$\mathbf{0}=(\mathbf{0 0})_{\mathbf{t w o}}$	add
$\mathbf{0}$	$\mathbf{1}=(\mathbf{0 1})_{\mathbf{t w o}}$	OR
$\mathbf{0}$	$\mathbf{2}=\mathbf{(1 0})_{\mathbf{t w o}}$	AND

Schematic

32-bit ALU w/ AND, OR, and ADD

- The 1-bit ALU can be cascaded together to form a 32 bit ALU
- Which operation is performed is controlled by the Operation bus

ALU Control Lines		Result
Carry In	Operation	
$\mathbf{0}$	$\mathbf{0}=\mathbf{(0 0})_{\mathrm{two}}$	add
$\mathbf{0}$	$\mathbf{1}=(\mathbf{0 1})_{\mathrm{two}}$	OR
$\mathbf{0}$	$\mathbf{2}=\mathbf{(1 0})_{\mathrm{two}}$	AND

- The designed 32-bit ALU is still missing the subtraction, slt (set if less than), and conditional branch operations

1-bit ALU with AND, OR, Addition, and Subtraction

- Recall that subtraction is performed using 2's complement arithmetic
- We calculate the 2's compliment of the sub-operand and add to the first operand

ALU Control Lines			Result
$\mathbf{B i n v e r t}$	Carry In	Operation	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}=\mathbf{(1 0})_{\mathrm{two}}$	AND
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}=\mathbf{(0 1})_{\mathrm{two}}$	$\mathbf{O R}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}=\mathbf{(0 0})_{\mathrm{two}}$	$\mathbf{a d d}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}=\mathbf{(0 0})_{\mathrm{two}}$	$\mathbf{s u b}$

1-bit ALU with AND, OR, Addition, and Subtraction capability

1-bit ALU with AND, OR, Add, Sub, and SLT (1)

- Since we need to perform one more operation, we increase the number of inputs at the multiplexer by 1 and label the new input as Less
- SLT operation: if (a<b), set Less to 1 $=>$ if $(a-b)<0$, set Less to 1
- SLT operation can therefore be expressed in terms of a subtraction between the two operands.
- If the result of subtraction is negative, set Less to 1 .
- How do we determine if the result is negative?

1-bit ALU with AND, OR, Add, Sub, and SLT capability

- The 1-bit ALU's can be cascaded together to form a 32 bit ALU
- Operations are controlled by the Operation bus

ALU Control Lines			
Binvert	Carry In	Operation	
0	0	$0=(00)_{\text {two }}$	Add sum(a,b)
0	0	$1=(01)_{\text {two }}$	OR (a+b)
0	0	$2=(10)_{\text {two }}$	AND (a•b)
1	1	$0=(00)_{\text {two }}$	Subtract $(\mathrm{a}-\mathrm{b})$
1	1	$\mathbf{3}=(11)_{\text {two }}$	SLT Set Result0 if $(\mathrm{a}<\mathrm{b})$

- Note that Binvert is always the same as Carry. In
- To test equality between a and b, subtract b
 from a and check if the result is 0 . W5-W

32-bit ALU w/ And, OR, Add, Subtract, SLT, and Equality Test

ALU Control Lines		Result	
Binvert	Carry In	Operation	
0	0	$0=(00)_{\mathrm{two}}$	Add sum (a, b)
0	0	$1=(01)_{\mathrm{two}}$	OR (a+b)
0	0	$2=(10)_{\mathrm{two}}$	AND (a•b)
1	1	$0=(00)_{\mathrm{two}}$	Subtract $(\mathrm{a}-\mathrm{b})$
1	1	$3=(11)_{\mathrm{two}}$	SLT if $(\mathrm{a}<\mathrm{b})$ Result0 $=1$
1	1	$0=(00)_{\mathrm{two}}$	Test Equality Zero $=1 \mathrm{if}(\mathrm{a}=\mathrm{b})$

32-bit ALU w/ And, OR, Add, Subtract, SLT, and Equality Test

U_ALU1bitInvSltTz
A $\bar{L} U 1$ bitInvSltTz.SchDoc

W5-W

