Hidden Markov Models

NIKOLAY YAKOVETS

A Markov System

N states

$$
s_{1}, . ., s_{N}
$$

A Markor System

N states

$$
s_{1}, . ., s_{N}
$$

S_{3}

modeling weather

A Markov System

state changes over time..

$$
\begin{array}{r}
S_{1} S_{2} S_{2} S_{3} S_{1} \xrightarrow{S_{t}} \text { time } \\
q_{t} \in\left\{s_{1}, \ldots, s_{N}\right\}
\end{array}
$$

A Markov System

 state changes over time..
modeling weather

A Markov Property

system is memory less..

A Markov System

Directed Graph

$$
P\left(q_{t+1}=S_{j} \mid q_{t}=S_{i}\right)
$$

Weather Prediction

Initial P

Transitional P

0

Weather Prediction

Initial P

Transitional P

0

Weather Prediction

Initial P

Probability of
3-day forecast?:

$\mathrm{P}(\mathrm{O}) \mathrm{P}(\mathrm{S} \mid \mathrm{O}) \mathrm{P}(\mathrm{Bl}$ (S) $=$

$$
0.1 * 0.7 * 0.3=0.021
$$

Towards Hidden Markov

what if can't observe the current state?

for example...

CraZy VENDING MACHINE

Prefers dispensing either Coke or Iced Tea

CraZy VENDING MACHINE

Prefers dispensing either Coke or lced Tea

Changes its mind all the time

CRAZY VENDING MACHINE

Prefers dispensing either Coke or Iced Tea

Changes its mind all the time

We don't know its preference at a given moment

CRAZY VENDING MACHINE

observations

hidden states

CRAZY VENDING MACHINE

 observation |state
e.g.

Coalbota	Lipton
1	0

Transitional P

Output P

Coalfola	Lipton	
Coulifla	0.7	0.3
Lipton	0.5	0.5

	(k)		-
Coaligata	0.6	0.1	0.3
Lipton	0.1	0.7	0.2

e.g.
 Probability of vending?:

e.g.

Probability of vending?:

 Consider all HMM paths:

e.g.

Probability of vending?:

Consider all HMM paths:

e.g.

Probability of vending?:

 Consider all HMM paths:

e.g.

Probability of vending?: Consider all HMM paths:

Hidden Markov

Set of states S :

$$
S=\left\{s_{1}, . ., s_{N}\right\}
$$

Hidden Markov

Set of states S :

$$
S=\left\{s_{1}, . ., s_{N}\right\}
$$

Output alphabet K:

$$
K=\left\{k_{1}, \ldots, k_{M}\right\}=\{1, \ldots, M\}
$$

Hidden Markov

Initial state probabilities П:

$$
\Pi=\left\{\pi_{i}\right\}, i \in S
$$

Hidden Markov

Initial state probabilities П:

$$
\Pi=\left\{\pi_{i}\right\}, i \in S
$$

State transition probabilities A :

$$
A=\left\{a_{i j}\right\}, i, j \in S
$$

Hidden Markov

 Initial state probabilities Π :$$
\Pi=\left\{\pi_{i}\right\}, i \in S
$$

State transition probabilities A:

$$
A=\left\{a_{i j}\right\}, i, j \in S
$$

Symbol emission probabilities B:

$$
B=\left\{b_{i j k}\right\}, i, j \in S, k \in K
$$

Hidden Markov

State sequence X :

$$
X=\left(X_{1}, . ., X_{T+1}\right)
$$

Hidden Markov

State sequence X :

$$
X=\left(X_{1}, . ., X_{T+1}\right)
$$

Output sequence $\mathbf{0}$:

$$
O=\left(o_{1}, . ., o_{T}\right)
$$

Fundamental Problems

Evaluation:

how likely is certain observation \mathbf{O} ?
Given:

$$
\underset{0}{\mu}=(\mathrm{A}, \mathrm{~B}, \mathrm{\Pi})
$$

Find: $\mathrm{P}(\mathrm{O} \mid \mu)$?

Naïve Evaluation

$P(O \mid X, \mu)$

$$
\begin{aligned}
& =\prod_{t=1}^{T} P\left(o_{t} \mid X_{t}, X_{t+1}, \mu\right) \\
& =b_{X_{1} X_{2} o_{1}} b_{X_{2} X_{3} o_{2}} \cdots b_{X_{T} X_{T+1} o_{T}}
\end{aligned}
$$

Naïve Evaluation

$$
\begin{aligned}
P(O \mid X, \mu) & =\prod_{t=1}^{1} P\left(o_{t} \mid X_{t}, X_{t+1}, \mu\right) \\
& =b_{X_{1} X_{2} o_{1}} b_{X_{2} X_{3} o_{2}} \cdots b_{X_{T} X_{T+1} o_{T}} \\
P(X \mid \mu)= & \pi_{X_{1}} a_{X_{1} X_{2}} a_{X_{2} X_{3}} \cdots a_{X_{T} X_{T+1}}
\end{aligned}
$$

Naïve Evaluation

$$
\begin{gathered}
=b_{X_{1} X_{2} o_{1}} b_{X_{2} X_{3} o_{2}} \cdots b_{X_{T} X_{T+1} o_{T}} \\
P(X \mid \mu)=\pi_{X_{1}} a_{X_{1} X_{2}} a_{X_{2} X_{3}} \cdots a_{X_{T} X_{T+1}} \\
P(O, X \mid \mu)=
\end{gathered}
$$

Naïve Evaluation

$$
\begin{aligned}
& =\prod_{t=1}^{T} P\left(o_{t} \mid X_{t}, X_{t+1}, \mu\right) \\
& =b_{X_{1} X_{2} o_{1}} b_{X_{2} X_{3} o_{2}} \cdots b_{X_{T} X_{T+1} o_{T}} \\
& P(X \mid \mu)=\pi_{X_{1}} a_{X_{1} X_{2}} a_{X_{2} X_{3}} \cdots a_{X_{T} X_{T+1}} \\
& P(O, X \mid \mu)=P(O \mid X, \mu) P(X \mid \mu) \\
& P(O \mid \mu)=\sum_{X} P(O \mid X, \mu) P(X \mid \mu) \\
& =\sum_{X_{1} \cdots X_{T+1}} \pi_{X_{1}} \prod_{t=1}^{T} a_{X_{t} X_{t+1}} b_{X_{t} X_{t+1}} o_{t}
\end{aligned}
$$

Naïve Evaluation

$$
\begin{aligned}
& =\prod_{t=1}^{T} P\left(o_{t} \mid X_{t}, X_{t+1}, \mu\right) \\
& =b_{X_{1} X_{2} o_{1}} b_{X_{2} X_{3} o_{2}} \cdots b_{X_{T} X_{T+1} o_{T}} \\
& P(X \mid \mu)=\pi_{X_{1}} a_{X_{1} X_{2}} a_{X_{2} X_{3}} \cdots a_{X_{T} X_{T+1}} \\
& P(O, X \mid \mu)=P(O \mid X, \mu) P(X \mid \mu) \\
& P(O \mid \mu)=\sum_{X} P(O \mid X, \mu) P(X \mid \mu) \\
& (2 T+1) \cdot N^{T+1} \\
& =\sum_{X_{1} \cdots X_{T+1}} \pi_{X_{1}} \prod_{t=1}^{T} a_{X_{t} X_{t+1}} b_{X_{t} X_{t+1} o_{t}} \quad \text { calculations! }
\end{aligned}
$$

Smarter Evaluation

Use DP! FW-BW Alg.

Smarter Evaluation

Use DP! FW-BW Alg.

 DP Table: state over time

Smarter Evaluation

Use DP! FW-BW Alg.
DP Table:
state over time
State

store forward variables:

$$
\alpha_{i}(t)=P\left(o_{1} o_{2} \cdots o_{t-1}, X_{t}=i \mid \mu\right)
$$

Smarter Evaluation

 compute forward variables:1. initialization:

$$
\alpha_{i}(1)=\pi_{i}
$$

Smarter Evaluation compute forward variables:

1. initialization:

$$
\alpha_{i}(1)=\pi_{i}
$$

2. induction:

$$
a_{j}(t+1)=\sum_{i=1}^{N} \alpha_{i}(t) a_{i j} b_{i j o t}
$$

Smarter Evaluation

 compute forward variables:1. initialization:

$$
\alpha_{i}(1)=\pi_{i}
$$

2. induction:

$$
a_{j}(t+1)=\sum_{i=1}^{N} a_{i}(t) a_{i j} b_{i j o t}
$$

3. total:

$$
P(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(T+1)
$$

Smarter Evaluation

 much lower complexity than naïve:
$2 N^{2} T$
 calculations!
 $(2 T+1) \cdot N^{T+1}$ calculations!

Smarter Evaluation

 much lower complexity than naïve:| $2 N^{2} T$ | vs. |
| :--- | ---: |
| calculations! | calculations! |

similarly, can work backwards:

$$
\beta_{i}(t)=P\left(o_{t} \cdots o_{T} \mid X_{t}=i, \mu\right)
$$

Fundamental Problems

Inference:

finding X that best explains \mathbf{O} ?

Given:

$$
\begin{aligned}
& \mu=(A, B, \Pi) \\
& 0
\end{aligned}
$$

Find: $\underset{\mathrm{X}}{\operatorname{argmax}} \mathrm{P}(\mathrm{XIO}, \mu)$

Smarter Inference

 Again, use DP! Viterbi Algorithm
Smarter Inference

 Again, use DP! Viterbi Algorithm
Store:

probability of the most probable path that leads to a node

$$
\delta_{j}(t)=\max _{X_{1} \cdots X_{t-1}} P\left(X_{1} \cdots X_{t-1}, o_{1} \cdots o_{t-1}, X_{t}=j \mid \mu\right)
$$

Smarter Inference

Again, use DP! Viterbi Algorithm
Store:
probability of the most probable path that leads to a node
$\delta_{j}(t)=\max _{X_{1} \cdots X_{t-1}} P\left(X_{1} \cdots X_{t-1}, o_{1} \cdots o_{t-1}, X_{t}=j \mid \mu\right)$
backtrack through max solution to find the path

Smarter Evaluation

 compute the variables (fill in the DP table):1 initialization:

$$
\delta_{i}(1)=\pi_{i}
$$

Smarter Evaluation

 compute the variables (fill in the DP table):1 initialization:

$$
\delta_{i}(1)=\pi_{i}
$$

2.2 induction:

$$
\delta_{j}(t+1)=\max _{1 \leq i \leq N} \delta_{i}(t) a_{i j} b_{i j o_{t}}
$$

Smarter Evaluation

 compute the variables (fill in the DP table):1 initialization:

$$
\delta_{i}(1)=\pi_{i}
$$

2.2 induction:

$$
\delta_{j}(t+1)=\max _{1 \leq i \leq N} \delta_{i}(t) a_{i j} b_{i j o_{t}}
$$

2.2 store backtrace:

$$
\psi_{j}(t+1)=\arg \max _{1 \leq i \leq N} \delta_{i}(t) a_{i j} b_{i j o_{t}}
$$

Smarter Evaluation

3 termination and path readout:

$$
\begin{aligned}
\hat{X}_{T+1} & =\underset{1 \leq i \leq N}{\arg \max } \delta_{i}(T+1) \\
\hat{X}_{t} & =\psi_{\hat{X}_{t+1}}(t+1) \\
P(\hat{X}) & =\max _{1 \leq i \leq N} \delta_{i}(T+1)
\end{aligned}
$$

Fundamental Problems

Estimation:

finding $\boldsymbol{\mu}$ that best explains \mathbf{O} ?

Given:
Otraining

Find:

$$
\underset{\mu}{\operatorname{argmax}} \mathrm{P}\left(\mathrm{O}_{\text {training }}, \mu\right)
$$

Estimation: MLE

no known analytic method

Estimation: MLE

no known analytic method
find local max using iterative hill-climb

Estimation: MLE

 no known analytic method find local max using iterative hill-climb Baum-Welch: (outline) 1 choose a model μ (perhaps randomly)
Estimation: MLE

 no known analytic method find local max using iterative hill-climb Baum-Welch: (outline) 1 choose a model μ (perhaps randomly) 2 estimate $\mathbf{P}(0 \mid \mu)$
Estimation: MLE

no known analytic method
find local max using iterative hill-climb
Baum-Welch: (outline)
1 choose a model μ (perhaps randomly)
2 estimate $\mathbf{P}(0 \mid \mu)$
3 choose a revised model μ to maximize the values of the paths used a lot...

Estimation: MLE

no known analytic method
find local max using iterative hill-climb
Baum-Welch: (outline)
1 choose a model μ (perhaps randomly)
2 estimate $\mathbf{P}(0 \mid \mu)$
3 choose a revised model μ to maximize the values of the paths used a lot...
4 repeat 1-3, hope to converge on values of μ

When HMMs are good..

Observations are
Random process can be represented by a stochastic finite state machine with emitting states

Why HMMs are good..

1. Statistical Grounding
2. Modularity
3. Transparency of a Model
4. Incorporation of Prior Knowledge

Why HMMs are bad..

1. Markov Chains
2. Local Maxima/Over Fitting
3. Slower Speed

Speech Recognition

given an audio waveform, would like to robustly extract \& recognize any spoken words

Target Tracking

estimate motion of targets in 3D world from indirect, potentially noisy measurements

Robot Navigation

CAD
Map
(S. Thrun,
San Jose Tech Museum)
Estimated
Map

as robot moves, estimate its world geometry

Financial Forecasting

predict future market behavior from historical data, news reports, expert opinions,..

Bioinformatics

multiple sequence alignment, gene finding, motif/promoter region finding..

HMM Applications

HMM can be applied in many more fields where the goal is to recover sequence that is not immediately observable:
cryptoanalysis
POS tagging
MT
activity recognition etc.

Thank You

