Hidden Markov Models

NIKOLAY YAKOVETS

\boldsymbol{N} states

$$s_1, ..., s_N$$

\boldsymbol{N} states

$$s_1, .., s_N$$

modeling weather

state changes over time..

 $q_t \in \{s_1, \dots, s_N\}$

state changes over time..

 $q_t \in \{s_1, \ldots, s_N\}$

modeling weather

A Markov Property

system is memory less..

 $P(q_{t+1} = S_j | q_t = S_i) = P(q_{t+1} = S_j | q_t = S_i, \text{any earlier history})$

Weather Prediction

Initial P

Transitional P

Weather Prediction

Initial P

Transitional P

Probability of 3-day forecast?: 🧁 🔊

Weather Prediction

Initial P

Transitional P

Probability of 3-day forecast?: 🌧 🔊 🔆

 $P(\clubsuit) P(\textcircled{}) P(\textcircled{}) P(\textcircled{}) =$ 0.1 * 0.7 * 0.3 = 0.021

Towards Hidden Markov

what if can't observe the current state?

for example...

Prefers dispensing either Coke or Iced Tea

Prefers dispensing either Coke or Iced Tea

Changes its mind all the time

Prefers dispensing either Coke or Iced Tea

Changes its mind all the time

We don't know its preference at a given moment

observations

e.g. Initial P

Transitional P

	Coca:Cola	Lipton
<u>Coca Cota</u>	0.7	0.3
Lipton	0.5	0.5

Output P

e.g. Probability of vending?:

Set of **states S**:

$$S = \{s_1, ..., s_N\}$$

Set of states S:

$$S = \{s_1, ..., s_N\}$$

Output **alphabet K**:

$$K = \{k_1, \dots, k_M\} = \{1, \dots, M\}$$

Initial state probabilities **Π**:

$$\Pi = \{\pi_i\}, i \in S$$

Initial state probabilities **Π**:

$$\Pi = \{\pi_i\}, i \in S$$

State **transition** probabilities A:

$$A = \{a_{ij}\}, i, j \in S$$

Initial state probabilities **Π**:

$$\Pi = \{\pi_i\}, i \in S$$

State **transition** probabilities **A**:

$$A = \{a_{ij}\}, i, j \in S$$

Symbol emission probabilities B:

 $B = \{b_{ijk}\}, i, j \in S, k \in K$

State sequence X:

$$X = (X_1, ..., X_{T+1})$$

State sequence X:

$$X = (X_1, ..., X_{T+1})$$

Output sequence **O**:

$$O = (o_1, ..., o_T)$$

Fundamental Problems

Evaluation: how likely is certain observation O?

```
Given:

μ = (A, B, Π)

O

Find:

P(O|μ)?
```

$$P(O|X,\mu) = \prod_{t=1}^{T} P(o_t|X_t, X_{t+1}, \mu)$$

= $b_{X_1X_2o_1}b_{X_2X_3o_2}\cdots b_{X_TX_{T+1}o_T}$

$$\begin{array}{ll} P(O|X,\mu) &=& \prod_{t=1}^{T} P(o_t|X_t, X_{t+1},\mu) \\ &=& b_{X_1X_2o_1}b_{X_2X_3o_2}\cdots b_{X_TX_T+1o_T} \end{array}$$

$$P(X|\mu) = \pi_{X_1} a_{X_1 X_2} a_{X_2 X_3} \cdots a_{X_T X_{T+1}}$$

$$P(O|X,\mu) = \prod_{t=1}^{T} P(o_t|X_t, X_{t+1}, \mu)$$

= $b_{X_1X_2o_1}b_{X_2X_3o_2}\cdots b_{X_TX_{T+1}o_T}$

$$P(X|\mu) = \pi_{X_1} a_{X_1 X_2} a_{X_2 X_3} \cdots a_{X_T X_{T+1}}$$
$$P(O, X|\mu) = P(O|X, \mu) P(X|\mu)$$

$$\begin{array}{ll} P(O|X,\mu) &=& \prod_{t=1}^{T} P(o_t|X_t, X_{t+1},\mu) \\ &=& b_{X_1X_2o_1}b_{X_2X_3o_2}\cdots b_{X_TX_{T+1}o_T} \end{array}$$

$$P(X|\mu) = \pi_{X_1} a_{X_1 X_2} a_{X_2 X_3} \cdots a_{X_T X_{T+1}}$$

$$P(O, X|\mu) = P(O|X, \mu) P(X|\mu)$$

$$P(O|\mu) = \sum_{X} P(O|X, \mu) P(X|\mu)$$

$$= \sum_{X_1 \cdots X_{T+1}} \pi_{X_1} \prod_{t=1}^T a_{X_t X_{t+1}} b_{X_t X_{t+1} o_t}$$

$$P(O|X,\mu) = \prod_{t=1}^{T} P(o_t|X_t, X_{t+1}, \mu)$$

= $b_{X_1 X_2 o_1} b_{X_2 X_3 o_2} \cdots b_{X_T X_{T+1} o_T}$

$$P(X|\mu) = \pi_{X_1} a_{X_1 X_2} a_{X_2 X_3} \cdots a_{X_T X_{T+1}}$$

$$P(O, X|\mu) = P(O|X, \mu) P(X|\mu)$$

$$P(O|\mu) = \sum_{X} P(O|X, \mu) P(X|\mu) \qquad (2T+1) \cdot N^{T+1}$$

$$= \sum_{X_1 \cdots X_{T+1}} \pi_{X_1} \prod_{t=1}^T a_{X_t X_{t+1}} b_{X_t X_{t+1}o_t}$$
calculations!

Use DP! FW-BW Alg.

Use DP! FW-BW Alg.

DP Table: state over time

State

Use DP! FW-BW Alg.

DP Table: state over time

store forward variables:

 $\alpha_i(t) = P(o_1 o_2 \cdots o_{t-1}, X_t = i | \mu)$

State

compute forward variables:

- 1. initialization:
 - $\alpha_i(1) = \pi_i$

much lower complexity than naïve:

$$\frac{2N^2T}{\text{calculations!}} \quad \text{vs.} \quad \frac{(2T+1) \cdot N^{T+1}}{\text{calculations!}}$$

much lower complexity than naïve:

$$\begin{array}{c|c} 2N^2T & \text{vs.} & (2T+1) \cdot N^{T+1} \\ \hline \text{calculations!} & \text{calculations!} \end{array}$$

similarly, can work backwards:

$$\beta_i(t) = P(o_t \cdots o_T | X_t = i, \mu)$$

Fundamental Problems

Inference:

finding X that best explains O?

```
Given:

μ = (A, B, Π)

Ο

Find:

argmax P(XIO,μ)
```

Smarter Inference

Again, use DP! Viterbi Algorithm

Smarter Inference

Again, use DP! Viterbi Algorithm

Store:

probability of the most probable path that leads to a node

$$\delta_j(t) = \max_{X_1 \cdots X_{t-1}} P(X_1 \cdots X_{t-1}, o_1 \cdots o_{t-1}, X_t = j | \mu)$$

Smarter Inference

Again, use DP! Viterbi Algorithm

Store:

probability of the most probable path that leads to a node

 $\delta_j(t) = \max_{X_1 \cdots X_{t-1}} P(X_1 \cdots X_{t-1}, o_1 \cdots o_{t-1}, X_t = j | \mu)$

backtrack through max solution to find the path

compute the variables (fill in the DP table):

1 initialization:

 $\delta_i(1) = \pi_i$

compute the variables (fill in the DP table):

1 initialization:

 $\delta_i(1) = \pi_i$

2.2 induction:

 $\delta_j(t+1) = \max_{1 \le i \le N} \delta_i(t) a_{ij} b_{ijo_t}$

compute the variables (fill in the DP table):

1 initialization:

 $\delta_i(1) = \pi_i$

2.2 induction:

$$\delta_j(t+1) = \max_{1 \le i \le N} \delta_i(t) a_{ij} b_{ijo_t}$$

2.2 store backtrace:

$$\psi_j(t+1) = \arg \max_{1 \le i \le N} \delta_i(t) a_{ij} b_{ijo_t}$$

3 termination and path readout:

^

 $\hat{X}_{T+1} = \underset{1 \le i \le N}{\arg \max \delta_i (T+1)}$

$$\hat{X}_t = \psi_{\hat{X}_{t+1}}(t+1)$$

 $P(\hat{X}) = \max_{1 \le i \le N} \delta_i(T+1)$

Fundamental Problems

Estimation: finding µ that best explains O?

Given: Otraining Find: argmax P(Otraining,μ) μ

no known analytic method

no known analytic method find local max using iterative hill-climb

no known analytic method find local max using iterative hill-climb Baum-Welch: (outline)

1 choose a model μ (perhaps randomly)

no known analytic method find local max using iterative hill-climb Baum-Welch: (outline)

- 1 choose a model μ (perhaps randomly)
- **2 estimate P(0** | μ)

no known analytic method find local max using iterative hill-climb Baum-Welch: (outline)

- 1 choose a model μ (perhaps randomly)
- **2 estimate P(0** | μ)
- 3 choose a revised model μ to maximize the values of the paths used a lot...

no known analytic method find local max using iterative hill-climb Baum-Welch: (outline)

- 1 choose a model μ (perhaps randomly)
- 2 estimate P(0|µ)
- 3 choose a revised model μ to maximize the values of the paths used a lot...
- 4 repeat 1-3, hope to converge on values of μ

When HMMs are good..

Observations are ordered

Random process can be represented by a stochastic finite state machine with emitting states

Why HMMs are good..

Statistical Grounding
 Modularity
 Transparency of a Model
 Incorporation of Prior Knowledge

Why HMMs are bad..

Markov Chains
 Local Maxima/Over Fitting
 Slower Speed

Speech Recognition

given an audio waveform, would like to robustly extract & recognize any spoken words

Target Tracking

Radar-based tracking of multiple targets

Visual tracking of articulated objects

estimate motion of targets in 3D world from indirect, potentially noisy measurements

Robot Navigation

Landmark SLAM (E. Nebot, Victoria Park)

CAD Map

(S. Thrun, San Jose Tech Museum)

Estimated Map

as robot moves, estimate its world geometry

Financial Forecasting

predict future market behavior from historical data, news reports, expert opinions,...

Bioinformatics

multiple sequence alignment, gene finding, motif/promoter region finding..

HMM Applications

HMM can be applied in many more fields where the goal is to recover sequence that is not immediately observable: cryptoanalysis **POS tagging** МТ activity recognition etc.

Thank You