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Weather Prediction 
Initial P  

0.5	   0.2	   0.1	  

Transitional P  

0	   0	   1	  

0.5	   0.5	   0	  

0.3	   0.7	   0	  

Probability of  
3-day forecast?: 

P(   )P(   |   )P(   |   )= 

0.1 * 0.7 * 0.3 = 0.021 



Towards Hidden Markov 

what if can’t observe the 
current state?    

for example… 
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CRAZY VENDING MACHINE 

Prefers dispensing 
either Coke or Iced Tea  

Changes its mind all 
the time 

We don’t know its  
preference at a given  
moment 



CRAZY VENDING MACHINE 

observations 

hidden 
states 



CRAZY VENDING MACHINE 

observation|state 

state(t+1)|state(t) 



e.g. 
Initial P  
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Transitional P  
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Output P  

0.6	   0.1	  

0.1	   0.7	  

0.3	  

0.2	  
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e.g. 
Probability of vending?: 

T(   |   )O(   |   ) T(   |   )O(   |   ) + 

Consider all HMM paths: 

T(   |   )O(   |   ) T(   |   )O(   |   ) + 

T(   |   )O(   |   ) T(   |   )O(   |   ) = … 
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Hidden Markov 
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Output alphabet K:!

K = {k1, . . . , kM} = {1, . . . ,M}

S = {s1, .., sN}
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Hidden Markov 
Initial state probabilities Π:!

State transition probabilities A:!
⇧ = {⇡i}, i 2 S

A = {aij}, i, j 2 S

Symbol emission probabilities B:!

B = {bijk}, i, j 2 S, k 2 K
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Hidden Markov 
State sequence X:!

Output sequence O:!

X = (X1, .., XT+1)

O = (o1, .., oT )



Fundamental Problems 
Evaluation: "
!how likely is certain observation O?!

!
Given:!
!μ = (A, B, Π)!
!O!

Find:!
!P(O|μ)?!
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Naïve Evaluation 

(2T + 1) ·NT+1

calculations! 
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store forward variables: 

↵i(t) = P (o1o2 · · · · · ot�1, Xt = i|µ)
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Smarter Evaluation 
compute forward variables: 

1. initialization: 

2. induction: 

a
j

(t+ 1) =
NX

i=1

↵
i

(t)a
ij

b
ijot

3. total: 

↵i(1) = ⇡i

P (O|µ) =
NX

i=1

↵i(T + 1)
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Smarter Evaluation 
much lower complexity than naïve: 

(2T + 1) ·NT+1

calculations! calculations! 
2N2T vs. 

similarly, can work backwards: 

�i(t) = P (ot · · · oT |Xt = i, µ)



Fundamental Problems 
Inference: "
!finding X that best explains O?!

!
Given:!
!μ = (A, B, Π)!
"O!

Find:!
!argmax P(X|O,μ)!

X!
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Smarter Inference 
Again, use DP! Viterbi Algorithm  
Store: 

 probability of the most probable path that 
 leads to a node 

 
 

 backtrack through max solution to find the 
 path 

�j(t) = max

X1···Xt�1

P (X1 · · ·Xt�1, o1 · · · ot�1, Xt = j|µ)
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Smarter Evaluation 
compute the variables (fill in the DP table): 

1 initialization: 

2.2 induction: 

2.2 store backtrace: 

�i(1) = ⇡i

�
j

(t+ 1) = max

1iN

�
i

(t)a
ij

b
ijot

 
j

(t+ 1) = arg max
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b
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Smarter Evaluation 
3 termination and path readout: 



Fundamental Problems 
Estimation: "
!finding μ that best explains O?!

!
Given:!
!Otraining!

Find:!
!argmax P(Otraining,μ)!

μ!
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Estimation: MLE 
no known analytic method 
find local max using iterative hill-climb  
Baum-Welch: (outline) 
1  choose a model μ (perhaps randomly) 
2  estimate P(O|μ) 
3  choose a revised model μ to maximize the 

 values of the paths used a lot… 
4  repeat 1-3, hope to converge on values of μ  



When HMMs are good.. 
 
 
Observations are ordered 
 
Random process can be represented by a 
stochastic finite state machine with emitting 
states 



Why HMMs are good.. 
 
 
1. Statistical Grounding 
2. Modularity 
3. Transparency of a Model 
4. Incorporation of Prior Knowledge 



Why HMMs are bad.. 
 
 
1. Markov Chains 
2. Local Maxima/Over Fitting 
3. Slower Speed 



Speech Recognition 

given an audio waveform, would like to 
robustly extract & recognize any spoken words  



Target Tracking 

estimate motion of targets in 3D world from 
indirect, potentially noisy measurements 

Radar-based tracking 
of multiple targets 

Visual tracking of 
articulated objects 



Robot Navigation 

as robot moves, estimate 
its world geometry 

CAD 
Map 

Estimated 
Map 

Landmark 
SLAM 

(S. Thrun, 
San Jose Tech Museum) 

(E. Nebot, 
Victoria Park) 



Financial Forecasting 

predict future market behavior from historical 
data, news reports, expert opinions,.. 



Bioinformatics 

multiple sequence alignment, gene finding, 
motif/promoter region finding.. 



HMM Applications 
HMM can be applied in many more fields 
where the goal is to recover sequence that is 
not immediately observable: 

 cryptoanalysis 
 POS tagging 
 MT 
 activity recognition 
 etc. 



Thank 
You 


