
1

Introduction
to FSA and Regular Expressions

Carlo Strapparava
FBK-irst
strappa@fbk.eu

Carlo Strapparava - Master in HLT

Introduction

 Regular Languages and Finite Automata are among
the oldest topics in formal language theory (early ‘40)

 Formal language theory uses algebra and set theory
to define formal languages as a sequence of symbols

 RL and FA have a wide range of applications:
 Lexical analysis in programming language compilation
 Circuit design, text editing, pattern matching, …
 More recently: parallel processing, image generation and

compression, type theory for OO languages, DNA
computing, …

2

Carlo Strapparava - Master in HLT

Naïve definitions

 Basically, a regular expression is a pattern describing
a certain amount of text

 A regular expression is a string that is used to
describe or match a set of strings, according to
certain syntax rules

 A regular expression, often called a pattern, is an
expression that describes a set of strings. They are
usually used to give a concise description of a set,
without having to list all elements

 For example, the three strings Handel - Händel -
Haendel could be described by the pattern
H(a|ä|ae)ndel

Carlo Strapparava - Master in HLT

Representations for languages

 A formal language is a language that is
defined by precise mathematical or machine
processable formulas.

 Formal languages generally have two aspects:
 the syntax of a language is what the language

looks like (i.e. the set of possible expressions that
are valid utterances in the language)

 the semantics of a language are what the
utterances of the language mean (which is
formalized in various ways, depending on the type
of language in question)

3

Carlo Strapparava - Master in HLT

Representations for languages

 The branch of mathematics and computer
science which studies exclusively the theory
of language syntax is known as formal
language theory

 In formal language theory, a language is
nothing more than its syntax

 Questions of semantics are not addressed

Carlo Strapparava - Master in HLT

Formal languages and computability

 Strong connection with the computability theory, i.e.
the branch of the theory of computation that studies
which problems are computationally solvable using
different models of computation

 The study of abstract machines and problems they are
able to solve

 Typical questions asked about such formalisms include:
 What is their expressive power? (Can formalism X describe

every language that formalism Y can describe? Can it describe
other languages?)

 What is their recognizability? (How difficult is it to decide
whether a given word belongs to a language described by
formalism X?)

 What is their comparability? (How difficult is it to decide whether
two languages, one described in formalism X and one in
formalism Y, or in X again, are actually the same language?).

4

Carlo Strapparava - Master in HLT

Representations for languages

 We will discuss the two principal methods for defining
languages: the generator and the recognizer

 In particular we will focus on a particular class of
generators (grammars) and of recognizers (automata)

 There are many types of formal languages, some of them
are very “simple”, others are more “complex”

 It is possible to put them in a hierarchy
 Regular languages are the simplest formal languages:

 Their generators are the regular expressions
 Their recognizers are the finite state automata

Carlo Strapparava - Master in HLT

Automata theory: formal
languages and formal grammars

Finite stateRegularRegularType-3

Deterministic pushdownDeterministic
context-free

Deterministic
context-free

n/a

Nondeterministic
pushdown

Context-freeContext-freeType-2

ThreadMildly context-sensitiveTree-adjoiningn/a

Nested stackIndexedIndexedn/a

Linear-boundedContext-sensitiveContext-sensitiveType-1

DeciderRecursive(no common name)n/a

Turing machineRecursively enumerableUnrestrictedType-0

Minimal automatonLanguagesGrammarsChomsky
hierarchy

Each category of languages or grammars is a proper subset of the category directly above it.

5

Carlo Strapparava - Master in HLT

Strings and Languages

 An alphabet is defined as any set of symbols
 Two examples:

 the set of 26 upper and 26 lower case Roman
letters (the Roman alphabet)

 the set {0,1} -> the binary alphabet
 Strings over an alphabet Σ are defined as

 ε (i.e. the empty string) is a string of Σ
 if x is a string of Σ and a is in Σ, then xa is in Σ

(concatenation)
 A language over Σ is a set of string over Σ

Carlo Strapparava - Master in HLT

Operations on strings and languages

 Concatenations (or product):
if x and y are strings over an alphabet Σ, then xy is
called the concatenation of x
Ex: if x = ab and y = cd then xy = abcd

 Reversal:
xR is the string x written in the reverse order
Ex: x = abcd then xR = dcba

 Closure:
a0 = ε
an = aan-1 for n ≥ 1
a* = ∪n≥0 an

 Positive Closure:
a+ = aa* = ∪n≥1 an

6

Carlo Strapparava - Master in HLT

Motivations

 How to represent a language L ?
(e.g. when L is infinite, that is contains an
arbitrary number of strings)

 Two principal methods:
 Use a generative system, called grammar -> a set

of rules that tell us which are the well-formed
sentences in the language

 Use a device (an automaton) that for a given input
string will halt and answer “yes” if the string
belongs to the language

Carlo Strapparava - Master in HLT

Regular Sets

 Regular sets are a class of languages central to
much of the language theory

 We will see several methods for specifying
these languages
 Regular expressions
 Right-linear grammars
 Deterministic finite-state automata
 Non deterministic finite-state automata

⇒ All this formalisms are in fact equivalent

7

Carlo Strapparava - Master in HLT

Regular sets - definition

 Let Σ be a finite alphabet. A regular set over Σ is
defined recursively as follows:

 the empty language Ø is a regular language.
 the empty string language { ε } is a regular

language.
 For each a ∈ Σ, the singleton language { a } is a

regular language.
 If A and B are regular languages, then A ∪ B (union),

AB (concatenation), and A* (Kleene star) are regular
languages.

 No other languages over Σ are regular.

A simple example of a language that is not regular is {anbn | n≥0}

Carlo Strapparava - Master in HLT

Regular expressions
 Regular expressions over Σ and the regular

sets they denote are defined recursively as
follows:
 Ø is a regular expression denoting the empty set
 ε is a regexpr denoting the regular set { ε }
 a in Σ is a regexp denoting { a }
 If p and q are regexp denoting P and Q, then

 (p|q) is a regexp denoting P ∪ Q
 (pq) is a regexp denoting PQ
 (p)* is regexp denoting P*

 Nothing else is a regular expression

- Sometimes the symbols ∪, +, or ∨ are used for alternation instead of the vertical bar |.
- To avoid brackets it is assumed that the Kleene star has the highest priority

8

Carlo Strapparava - Master in HLT

Examples

 The finite languages, i.e. those containing only a finite
number of words
 These are obviously regular as one can create a

 regular expression that is the union of every word in
 the language, and thus are regular

 01 denoting {01}

 0* denoting {0}*

 (0|1)* denoting {0, 1}*

 (0|1)*011 denoting all strings of 0’s and 1’s ending in 011

Carlo Strapparava - Master in HLT

Examples (cont.)
 Given the alphabet Σ = {a, b}:

ba* - all the strings that begin with a b followed only by a’s

a*ba*ba* - strings that contain exactly two b’s

 (a | b)* - all the strings on Σ

 (a | b)* (aa | bb) (a | b)* - all the string on Σ that contain
either two consecutive a’s or two consecutive b’s

 [aa | bb | (ab | ba)(aa | bb)*(ab | ba)]* - strings that
contain an even number of a’s and an even number of b’s

 (b | abb)* - strings on Σ in which an a is followed immediately by
at least two b’s

9

Carlo Strapparava - Master in HLT

Basic algebraic properties
 Let α, β, and γ regular expressions

 α | β = β | α
 α | (β | γ) = (α | β) | γ α(βγ) = (αβ)γ
 Ø* = ε
 α(β | γ) = αβ | αγ (α | β)γ = αγ | βγ
 αε = εα = α
 α∗ = α | α∗ (α∗)∗ = α∗

 α | α = α α | Ø = α

 All these properties are demonstrable by reasoning
on the respective denoted sets

Carlo Strapparava - Master in HLT

Finite State Automata

 We have seen some ways to define the class
of the regular sets:

 The regular sets are those sets defined by
regular expressions

 The regular sets are the languages generated
by right-linear grammar

 We will see another way: regular sets defined
by Finite Automata

10

Carlo Strapparava - Master in HLT

Finite State Automata

 A finite-state automaton consists only of an input
tape and a finite control

 A finite control means that the device that can be in
one among a finite number of states

 In certain conditions, it can switch to another state
=> this is called a transition

 Allowable input symbols
 Initial and final states
 If the automaton is in a final state when it stops

working, it is said to accept its input

Carlo Strapparava - Master in HLT

FSA - transitions
 A state transition function that, given the

“current” state and the “current” input
symbol, returns all possible next states

 In principle, this device is non-deterministic:
the device goes in all its next states, such as
it replicates itself

 The device accepts the inputs if any of its
parallel existences reaches an accepting state

qi
qk

qf

qj
a

b

c
c

d final state

initial state

11

Carlo Strapparava - Master in HLT

FSA - definitions

 A non-deterministic finite state automaton is a
5-tuple M = (Q, Σ, δ, q0, F), such that

1. Q is a finite state of states

2. Σ is a finite set of allowable input symbols

3. δ is a state transition function, i.e. a mapping from
Q x Σ to P(Q) that defines the finite state control

4. q0 in Q is the initial state

5. F ⊆ Q is the set of final states

Carlo Strapparava - Master in HLT

FSA - definitions
 To determine the future behavior of a FSA, all we

need to know is its configuration
 The current state of the finite control
 The string symbol on the input tape (= the symbol under

the input head, followed by all symbols on the right)

 A move is represented as
(q, aw) → (q’, w)

means:
 The automaton is in the current state q
 The input head is scanning the symbol a
 The automaton may change its state to q’ and shift the input

head on the right

12

Carlo Strapparava - Master in HLT

FSA - example
 Let M = ({p, q, r}, {0, 1}, δ, p, {r}) a FSA where δ

is defined as:

 M accepts string of 0’s and 1’s that contains two
consecutive 0’s

{r}{r}r

{p}{r}q

{p}{q}pState

10δ

Input

p: Two consecutive 0’ have not appeared yet

q: Two consecutive 0’ have not appeared ,
 but the previous symbol was a 0

r: Two consecutive 0’ have appeared

On input 01001, we have:
(p, 01001) → (q, 1001) → (p, 001) → (q, 01) → (r, 1) → (r, ε)

Carlo Strapparava - Master in HLT

FSA - non-deterministic case

 Design a non-deterministic FSA to accept the
strings
 in the alphabet {1, 2, 3},
 and such that the last symbol in the input string

also appear previously in the string
 e.g. 121 is accepted, 31312 not

 We will need some state, an initial state q0
(nothing has been recognized), q1 q2 q3 some
guessing has been made, and a final qf

13

Carlo Strapparava - Master in HLT

FSA - non-deterministic case (2)

 More formally:
M = ({q0, q1, q2, q3, qf}, {1, 2, 3}, δ, q0, {qf})

ØØØqf

{q3, qf}{q3}{q3}q3

{q2}

{q1}

{q0, q3}

3

{q2, qf}{q2}q2

{q1}{q1, qf}q1

{q0, q2}{q0, q1}q0State

21δ

Input

Carlo Strapparava - Master in HLT

(qf, ε)

(q1, ε)(q1, 1)(q1, 21)(q1, 321)(q1, 2321)

(qf, 1)

(q2, ε)(q2, 1)(q2, 21)(q2, 321)

(q3, ε)(q3, 1)(q3, 21)

(q2, ε)(q2, 1)

(q1, ε)

(q0, ε)(q0, 1)(q0, 21)(q0, 321)(q0, 2321)(q0, 12321)

FSA - non-deterministic case (3)
 On input 12321, the configurations will be

Since (q0, 12321) → (qf, e), the string 12321 is in L(M)*

14

Carlo Strapparava - Master in HLT

FSA - transition graph

 It is often convenient to have a graph
representation of finite automata

 E.g.: M = ({p, q, r}, {0, 1}, δ, p, {r}) with

 can be represented as

p rq

1 0
0

0, 1

1
Start

{r}{r}r

{p}{r}q

{p}{q}pState

10δ

Input

Carlo Strapparava - Master in HLT

FSA - transition graph
 M = ({q0, q1, q2, q3, qf}, {1, 2, 3}, δ, q0, {qf}) with

q0 q2 qf

q1

1, 2, 3
1

q3

2

3

1, 2, 3

1, 2, 3

1, 2, 3

1

2

3

Start

ØØØqf

{q3, qf}{q3}{q3}q3

{q2}

{q1}

{q0, q3}

3

{q2, qf}{q2}q2

{q1}{q1, qf}q1

{q0, q2}{q0, q1}q0State

21δ

Input

Non-deterministic

15

Carlo Strapparava - Master in HLT

FSA and non deterministic FSA

 There is an equivalence to deterministic and
non-deterministic FSA:

 Theorem:
If L= L(M) for some non-deterministic FSA M,
then there is a M’ such that L = L(M’)

In the case of finite state automata,
determinism and non-determinism have the
same expressive power

Carlo Strapparava - Master in HLT

Non-deterministic → deterministic
transformation

 Theorem:
If L= L(M) for some non-deterministic FSA
M, then there is a M’ such that L = L(M’)
 M = (Q, Σ, δ, q0, F).

We construct M’ = (Q’, Σ, δ', q’0, F’), such that
1) Q’=P(Q), i.e. the powersets (sets of states) of M
2) q’0 = {q0}
3) F’ consists of all subsets S of Q s.t. S ∩ F ≠ Ø
4) For all S ⊆ Q, δ’(S,a) = S’, where

S’ = {p | δ(q,a) contains p for some q in S}

16

Carlo Strapparava - Master in HLT

N-FSA to D-FSA in practice

 Given an N-FSA, we can construct an equivalent
D-FSA

 States in the D-FSA correspond to the powersets
of states in the N-FSA

 Straightforward way of computing D-FSA:
 Create a list of all powersets of states in N-FSA
 Add transitions according to those in the

original N-FSA
 Remove any states which cannot be reached

Carlo Strapparava - Master in HLT

N-FSA to D-FSA in practice
Example:

q0 q1

a

a b

 b

q2

a

a

We recall that | P(X) | = 2| X |

Powersets are

 ∅, q0, q1, q2, {q0,q1}, {q0,q2}, {q1,q2}, {q0,q1,q2}

17

Carlo Strapparava - Master in HLT

N-FSA to D-FSA
Example (continued)

a b

∅ ∅ ∅
q0 {q0,q1} q2
q1 ∅ q1
q2 {q1,q2} ∅
{q0,q1} {q0,q1} {q1,q2}
{q0,q2} {q0,q1,q2} q2
{q1,q2} {q1,q2} q1
{q0,q1,q2} {q0,q1,q2} {q1,q2}

q0 q1

a

a b

 b

q2

a

a

Carlo Strapparava - Master in HLT

N-FSA to D-FSA

q0 q2

a

q1

{q0,q2} {q1,q2}

{q0,q1}

{q0,q1,q2}

∅

b

a

a

a

a
a

a

a

bb

b

b

b
b

b

18

Carlo Strapparava - Master in HLT

N-FSA to D-FSA

q0 q2

a

q1

{q0,q2} {q1,q2}

{q0,q1}

{q0,q1,q2}

∅

b

a

a

a

a
a

a

a

bb

b

b

b b

Highlighted states can’t be reached (there are no transitions to them)

or they are sink (lead to no acceptance states). So we can eliminate them.

b

Carlo Strapparava - Master in HLT

N-FSA to D-FSA

q0 q2 q1

{q1,q2}

{q0,q1}

b

a

a

a

a

b

b

We now have a D-FSA

b

19

Carlo Strapparava - Master in HLT

N-FSA to D-FSA

 Considering all powersets can lead to states in the
D-FSA which cannot be reached and they have to
be removed

 The number of powersets immediately becomes
very large (an N-FSA with 20 states would have
220 = 1.048.576 states!)

 We don’t really need to consider all powersets:
only those to which there are transitions in the
original N-FSA have to be considered

Carlo Strapparava - Master in HLT

Transformation Regexp <-> FSA

 Theorem (Kleene):
To each regular expression there corresponds
a FSA and to each FSA there corresponds a
regular expression

 We will give an algorithm to switch from
these two objects

20

Carlo Strapparava - Master in HLT

Transformation Regexp <-> FSA

 We can observe that (α, β, αi are regular expressions):

q0 q1

α
q2

β α β⇔

q0

α
α∗⇔

q0 q1

α1

α2

αn

… α1 | α2 | … | αn⇔

Carlo Strapparava - Master in HLT

Node elimination

 Suppose we want to eliminate the node q2
from the graph:

q0

q1

α1

q2

q3

q4

α2

β2

β1

γ1

γ2

q0

q1

q3

q4

α1 (β1 | β2)* γ1

α2 (β1 | β2)* γ2

α2 (β1 | β2)* γ1

α1 (β1 | β2)* γ2

⇒

21

Carlo Strapparava - Master in HLT

FSA -> Regexp
 An example to transform a FSA into a regexp

q0 q1

ab, ba

ab, ba

aa, bbaa, bb

q0 q1

ab | ba

ab | ba

aa | bbaa | bb

x

y

ε

ε

Carlo Strapparava - Master in HLT

FSA -> Regexp

q0 q1

ab | ba

ab | ba

aa | bbaa | bb

x

y

ε

ε

q0

(ab | ba) (aa | bb)* (ab | ba)

aa | bb

x

y

ε

ε [(aa | bb) | (ab | ba) (aa | bb)* (ab | ba)]*

x

y

22

Carlo Strapparava - Master in HLT

Regexp -> FSA
 Let us consider the regexp

 (a | b)* (aa | bb) (a | b)*

(a | b)* (aa | bb) (a | b)*
x y

(aa | bb)
x y1 2

(a | b)* (a | b)*

a a

1 2

b b
bb

aa
a

a

1 2

b
b4

3a a

b b

Carlo Strapparava - Master in HLT

Equivalence of FSA’s

 Theorem (Moore):
There exists an algorithm, to determine if
two FSA’s on an alphabet Σ are equivalent

 An algorithm:
 A and A’ two FSA’s on Σ = {0,1}.

 We rename the nodes, to have different labels in
A and A’

 We build a table of comparisons, with three
columns, in this way:

23

Carlo Strapparava - Master in HLT

Equivalence of FSA’s (cont.)

(1,4)(3,6)(2,7)

(3,6)(2,7)(3,6)

(1,4)(3,6)(2,5)

(2,5)(1,4)(1,4)

(vb, v’b)(va, v’a)(v, v’)

a

1

2

b

3

b b

a

a

a

4

5

b

6

b b a a

7

a

b

A = A’ =

Carlo Strapparava - Master in HLT

Equivalence of FSA’s (cont.)

 If in the table, we get to a pair (v, v’),
where v is an acceptance state and v’ not,
=> A and A’ are not equivalent

 If we get to an end, i.e. there is no pair in the
columns 2 and 3 that is not present in column 1,
=> the A and A’ are equivalent

24

Carlo Strapparava - Master in HLT

Automata theory: formal
languages and formal grammars

Finite stateRegularRegularType-3

Deterministic pushdownDeterministic
context-free

Deterministic
context-free

n/a

Nondeterministic
pushdown

Context-freeContext-freeType-2

ThreadMildly context-sensitiveTree-adjoiningn/a

Nested stackIndexedIndexedn/a

Linear-boundedContext-sensitiveContext-sensitiveType-1

DeciderRecursive(no common name)n/a

Turing machineRecursively enumerableUnrestrictedType-0

Minimal automatonLanguagesGrammarsChomsky
hierarchy

Each category of languages or grammars is a proper subset of the category directly above it.

Carlo Strapparava - Master in HLT

Tokenization

 Wordforms, inflected words as it appears in the corpus
 e.g. cat and cats are treated as two separated words

 Lemma
 We might want to treat cat and cats as instances of a single

lemma “cat”

 Types: distinct words in a corpus, i.e. the size of the
vocabulary

 Tokens: the total number of running words
 The Brown corpus contains 1 million wordform tokens,

that is 61,803 wordform types, that is 37,851 lemma
types

25

Carlo Strapparava - Master in HLT

Tokenization

 Types and tokens
 The following sentence taken from the Brown

corpus:
 “They picnicked by the pool, then lay back on

 the grass and looked at the stars”
 has 16 word tokens and 14 word types (not

counting punctuation)

Carlo Strapparava - Master in HLT

Tokenization

 A simple automaton for the recognition of the
tokens

q0 q1

letter
q2

delimiter

letter or digit

A delimiter can be any character that is not a letter or a digit

26

Carlo Strapparava - Master in HLT

Regexp in the “real world”

 It is worth noting that many real-world "regular
expression" engines implement features that cannot
be expressed in the regular expression algebra

 Some examples:
 grep, Unix command line
 AWK, Unix command line, progr. language
 Emacs, a powerful editor
 Perl, a programming language
 Pregexp package, in Scheme

Carlo Strapparava - Master in HLT

Grep - a Unix command

 grep, egrep, fgrep - print lines matching a pattern
[egrep = grep -e]

 SYNOPSIS
 grep [options] PATTERN [FILE...]
 grep [options] [-e PATTERN | -f FILE] [FILE...]

 grep searches the named input FILEs (or standard input
if no files are named, or the file name - is given) for lines
containing a match to the given PATTERN. By default,
grep prints the matching lines

 egrep is used when the pattern is a regular expression

27

Carlo Strapparava - Master in HLT

Grep - a Unix command

 grep fish fortunes
– A woman without a man is like a fish without a bicycle.
– No one can feel as helpless as the owner of a sick goldfish.
– Time is about the stream I go a-fishing in.

 fgrep inst /etc/passwd
– glenn:*:301:300:Glenn Stafford-instructor:/u/glenn:/bin/ksh
– institution:*:301:300:Database Acct:/u/db:/bin/ksh

Carlo Strapparava - Master in HLT

grep - other examples

 grep -i apple fruitlist.txt

returns all lines with the words 'apple',
'Apple', 'apPLE', or any other mixing of capital
and lower case

 grep -r 'hello' /home/gigi

searches for 'hello' in all files under the
directory '/home/gigi'

28

Carlo Strapparava - Master in HLT

Grep - regular expressions

 A regular expression may be followed by one of several
repetition operators:
 . The period . matches any single character.
 ? The preceding item is optional and will be matched at most once.
 * The preceding item will be matched zero or more times.
 [^] Match any one character except those enclosed in [], as in [^0-9].
 + The preceding item will be matched one or more times.
 {n} The preceding item is matched exactly n times.
 {n,} The preceding item is matched n or more times.
 {n,m} The preceding item is matched at least n times, but not more

than m times.

 Two regular expressions may be concatenated;
 Two regular expressions may be joined by the infix operator

| ; the resulting regular expression matches any sub-
expression

Carlo Strapparava - Master in HLT

grep - examples

 An example is
(hurrah){2,3}

which matches
hurrah hurrah

as well as
 hurrah hurrah hurrah

 A more complex example combines alternation and grouping with a
quantifier:

 (hurrah |yahoo){2,3}

That gives twelve possible combinations, including for example

hurrah yahoo
and

 yahoo hurrah yahoo

29

Carlo Strapparava - Master in HLT

grep - examples

 egrep '((the|a) (big(red)?|small(yellow)?) (car|bike))' car.txt

the big red car

a small bike

the small yellow car

a big red bike

Carlo Strapparava - Master in HLT

Anchors

 Using ^ and $, you can force a regexp to
match only at the beginning ^ or at the end $
of a line
 E.g. ^cat matches only those lines that start with

cat, and cat$ matches only those lines that end
with cat

 \< and \> are start-of-word, end-of-word
anchors
 E.g. \<cat\> looks for only the word cat

30

Carlo Strapparava - Master in HLT

Anchors
grep 'cat' cats.txt
cat
cattle
catalog
scrawny cat
vacation
wildcat

grep '\<cat' cats.txt
cat
cattle
catalog
scrawny cat

grep '\<cat\>' cats.txt
cat
scrawny cat

Carlo Strapparava - Master in HLT

Anchors

 These word boundaries are not supported in
all regexp engines implementations

 Some implementations (inluding perl) offer
is-a-word-boundary and not-a-word-boundary

 \b and \B respectively

grep '\bcat\b' cats.txt
cat
scrawny cat

31

Carlo Strapparava - Master in HLT

Character classes

 The […] construct indicates the presence of
one of the enclosed characters

 E.g. c[ao]ke matches cake and coke
 [0123456789abcdefABCDEF] is also

written as [0-9a-fA-F]
 [^…] means a ‘negated’ character set
 E.g. [^0-9] means any character except

digits

Carlo Strapparava - Master in HLT

Dot

 The dot . is a special character and matches
any character

 E.g. th.s matches this, thus, thgs,
th@s, …

 When you have to match a dot, you need to
‘escaped’ it => \.

 E.g. to match the IP address 74.6.7.121 all
three dots need to be escaped
74\.6\.7\.121

32

Carlo Strapparava - Master in HLT

Quantifiers

 Using quantifiers, it is possible to specify how often a
pattern may or must be repeated

 The general form is {min,max}
 Examples:
 bo{1,2}k matches both book and bok
 [aeiou]{3,5} matches any sequence of three to

five vowels
 finds{0,1} matches find and finds
 finds{0,1} = finds?
 ^-{80,80}$

 matches lines of exactly eighty dash

Carlo Strapparava - Master in HLT

Alternation and grouping

 The meta character | means or
 ^(From|Subject|Date):

 filters e-mail headers

 (…) has the function of grouping for quantifiers
 (hurrah){2,3} matches hurrah hurrah
hurrah

 (hurrah | yahoo){2,3} matches
 hurrah yahoo or yahoo hurrah yahoo etc.

33

Carlo Strapparava - Master in HLT

Backreferencing
 Grouping has a very useful side-effect
 Certain regexp implementations remember the

matched text in a grouping
 E.g. searching for double words in a text, like
… when when …
 ([a-zA-Z]+) \1

the \1 is called a backreference to the first group, in
this case ([a-zA-Z]+)

 maybe better ([a-zA-Z]+) \1\>

 The max number of backreferences is limited to
nine in most regexp implementations

Carlo Strapparava - Master in HLT

grep - regular expressions

 How to express palindromes in a regular
expression?

 It can be done by using the back references,
for example a palindrome of 5 characters can
be written in

 grep -e '\(.\)\(.\).\2\1' file

 It matches the word "radar" or "civic".

\(.\)\(.\).\2\1
 r a d a r

{ {

34

Carlo Strapparava - Master in HLT

Emacs and regexp

 Emacs is a powerful text editor
 Let us give a look at its regexp facilities
 An interactive command “replace-regexp”

 Transform every line in a file (e.g. /etc/passwd) that matches
 ^\([^:]*\):[^:]*:\([0-9]*\):[0-9]*:\([^:]*\):.*$

 into
 Login {\1} Full Name {\3} UID {\2}

 Ex. It matches the line
 mysql:*:74:74:MySQL Server:/var/empty:/usr/bin/false

 ^\([^:]*\):[^:]*:\([0-9]*\):[0-9]*:\([^:]*\):.*$

Carlo Strapparava - Master in HLT

Exercise

 ALPHABET: a b c
 Write a regular expression for the language

of all strings over the alphabet {a,b,c} that
start with character a

Solution: a(a|b|c)*

35

Carlo Strapparava - Master in HLT

Exercise

 ALPHABET: a b c
 Write a regular expression for the language

of all strings over the alphabet {a,b,c} that
start and end with the character a

SOLUTION: a(a|b|c)*a|a

Carlo Strapparava - Master in HLT

Exercise

 ALPHABET: a b c
 Write a regular expression for the language

of all strings over the alphabet {a,b,c} that
start with character a, but do not end with
character a

SOLUTION: a(a|b|c)*(b|c)

36

Carlo Strapparava - Master in HLT

Exercise

 ALPHABET: a b c
 Give a regular expression over {a, b, c}

where a must appear in blocks of even length

SOLUTION: (aa|b|c)*

Carlo Strapparava - Master in HLT

Exercise

 ALPHABET: 0 1 x
 Write a regular expression for the language

of all strings over the alphabet {0,1,x} that
contain at least one x

SOLUTION: (0|1)*x(0|1|x)*

37

Carlo Strapparava - Master in HLT

Different syntax in the real engines

 The practical regexp engines use different syntax for
writing the regular expressions
 Simple matching
 POSIX basic
 POSIX extended
 Emacs
 Grep
 GNU regex
 Java
 Perl
 Ruby
 …

 Mainly small differences, but before using a tool
you have to read the manual

