Praise for Higher-Order Perl . . .

As a programmer, your bookshelf is probably overflowing with books that did nothing to change the way you
program . .. or think about programming.

You're going to need a completely different shelf for this book.

While discussing caching techniques in Chapter 3, Mark Jason Dominus points out how a large enough
increase in power can change the fundamental way you think about a technology. And thats precisely what
this entire book does for Perl.

It raids the deepest vaults and highest towers of Computer Science, and transforms the many arcane treasures
it finds—recursion, iterators, filters, memoization, partitioning, numerical methods, higher-order functions,
currying, cutsorting, grammar-based parsing, lazy evaluation, and constraint programming—into powerful
and practical rools for real-world programming tasks: file system interactions, HTML processing, database
access, web spidering, typesetting, mail processing, home finance, text outlining, and diagram generation.

Along the way it also scatters smaller (but equally invaluable) gems, like the elegant explanation of the
difference between “scope” and “duration” in Chapter 3, or the careful exploration of how best to return
error flags in Chapter 4. It even has practical tips for Perl evangelists.

Dominus presents even the most complex ideas in simple, comprehensible ways, but never compromises on
the precision and attention to detail for which he is so widely and justly admired.

His writing is—as always—lucid, eloquent, witty, and compelling.

Aptly named, this truly /is/ a Perl book of a higher order, and essential reading for every serious Perl
programmer.

—Damian Conway, Co-designer of Perl 6
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PREFACE

A well-known saying in the programming racket is that a good Fortran pro-
grammer can write Fortran programs in any language. The sad truth, though,
is that Fortran programmers write Fortran programs in any language whether
they mean to or not. Similarly, we, as Perl programmers, have been writing C
programs in Perl whether we meant to or not. This is a shame, because Perl is
a much more expressive language than C. We could be doing a lot better, using
Perl in ways undreamt of by C programmers, but we’re not.

How did this happen? Perl was originally designed as a replacement for C
on the one hand and Unix scripting languages like Bourne Shell and awk on
the other. Perl’s first major proponents were Unix system administrators, people
familiar with C and with Unix scripting languages; they naturally tended to write
Perl programs that resembled C and awk programs. Perl’s inventor, Larry Wall,
came from this sysadmin community, as did Randal Schwartz, his coauthor on
Programming Perl, the first and still the most important Perl reference work.
Other important early contributors include Tom Christiansen, also a C-and-
Unix expert from way back. Even when Per] programmers didn't come from the
Unix sysadmin community, they were trained by people who did, or by people
who were trained by people who did.

Around 1993 I started reading books about Lisp, and I discovered something
important: Perl is much more like Lisp than it is like C. If you pick up a good
book about Lisp, there will be a section that describes Lisp’s good features.
For example, the book Paradigms of Artificial Intelligence Programming, by Peter
Norvig, includes a section titled What Makes Lisp Different? that describes seven
features of Lisp. Perl shares six of these features; C shares none of them. These
are big, important features, features like first-class functions, dynamic access to
the symbol table, and automatic storage management. Lisp programmers have
been using these features since 1957. They know a lot about how to use these
language features in powerful ways. If Perl programmers can find out the things
that Lisp programmers already know, they will learn a lot of things that will make
their Perl programming jobs easier.

This is easier said than done. Hardly anyone wants to listen to Lisp pro-
grammers. Perl folks have a deep suspicion of Lisp, as demonstrated by Larry
Wall’s famous remark that Lisp has all the visual appeal of oatmeal with fingernail

XV



XV1

PREFACE

clippings mixed in. Lisp programmers go around making funny noises like ‘cons’
and ‘cooder,” and they talk about things like the PC loser-ing problem, whatever
that is. They believe that Lisp is better than other programming languages, and
they say so, which is irritating. But now it is all okay, because now you do not
have to listen to the Lisp folks. You can listen to me instead. I will make sooth-
ing noises about hashes and stashes and globs, and talk about the familiar and
comforting soft reference and variable suicide problems. Instead of telling you
how wonderful Lisp is, I will tell you how wonderful Perl is, and at the end you
will not have to know any Lisp, but you will know a lot more about Perl.

Then you can stop writing C programs in Perl. I think that you will find it
to be a nice change. Perl is much better at being Perl than it is at being a slow
version of C. You will be surprised at what you can get done when you write Perl
programs instead of C.

WEB SITE
All the code examples in this book are available from my web site at:
http://perl.plover.com/hop/

When the notation in the margin is labeled with the tag some-example, the
code may be downloaded from:

http://perl.plover.com/hop/ExampTles/some-example

The web site will also carry the complete text, an errata listing, and other items
of interest. Should you wish to send me email about the book, please send your
message to mjd-hop@plover.com.

ACKNOWLEDGMENTS

Every acknowledgments section begins with a statement to the effect that “with-
out the untiring support and assistance from my editor, Tim Cox, this book
would certainly never have been written”. Until you write a book, you will never
realize how true this is. Words fail me here; saying that the book would not
have been written without Tim’s untiring support and assistance doesn’t begin
to do justice to his contributions, his kindness, and his vast patience. Thank
you, Tim.



This book was a long time in coming, and Tim went through three assistants
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may sound faint, but I consider it the highest praise.

Many thanks to Troy Lilly and Simon Crump, the production managers,
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Shortly before the book went into production, I started writing tests for the
example code. I realized with horror that hardly any of the programs worked
properly. There were numerous small errors (and some not so small), inconsis-
tencies between the code and the output, typos, and so on. Thanks to the heroic
eleventh-hour efforts of Robert Spier, I think most of these errors have been
caught. Robert was not only unfailingly competent, helpful, and productive,
but also unfailingly cheerful, too. If any of the example programs in this book
work as they should, you can thank Robert. (If they don’t, you should blame
me, not Robert.) Robert was also responsible for naming the MOD document
preparation system that I used to prepare the manuscript.

The contributions of my wife, Lorrie Kim, are too large and pervasive to
note individually. It is to her that this book is dedicated.

A large number of other people contributed to this book, but many of them
were not aware of it at the time. I was fortunate to have a series of excellent
teachers, whose patience I must sometimes have tried terribly. Thanks to Mark
Foster, Patrick X. Gallagher, Joan Livingston, Cal Lobel (who first taught me to
program), Harry McLaughlin, David A. J. Meyer, Bruce Piper, Ronnie Rabassa,
Michael Tempel, and Johan Tysk. Mark Foster also arrived from nowhere in the
nick of time to suggest the title for this book just when I thought all was lost.

This book was directly inspired by two earlier books: ML for the Working
Programmer, by Lawrence Paulson, and Structure and Interpretation of Computer
Programs, by Harold Abelson and Gerald Jay Sussman. Other important influ-
ences were Introduction to Functional Programming, by Richard Bird and Philip
Wadler, and Paradigms of Artificial Intelligence Programming, by Peter Norvig.

The official technical reviewers had a less rewarding job than they might have
on other projects. This book took a long time to write, and although I wanted to
have long conversations with the reviewers about every little thing, I was afraid
that if I did that, I would never ever finish. So I rarely corresponded with the
reviewers, and they probably thought that I was just filing their suggestions in the
shredder. But I wasn't; I pored over all their comments with the utmost care, and
agonized over most of them. My thanks to the reviewers: Sean Burke, Damian
Conway, Kevin Lenzo, Peter Norvig, Dan Schmidt, Kragen Sitaker, Michael
Scott, and Adam Turoff.

While I was writing, I ran a mailing list for people who were interested in
the book, and sent advance chapters to the mailing list. This was tremendously
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helpful, and I'd recommend the practice to anyone else. The six hundred and
fifty wonderful members of my mailing list are too numerous to list here. All
were helpful and supportive, and the book is much better for their input. A few
stand out as having contributed a particularly large amount of concrete mate-
rial: Roland Young, Damien Warman, David “Novalis” Turner, Iain “Spoon”
Truskett, Steve Tolkin, Ben Tilly, Rob Svirskas, Roses Longin Odounga, Luc
St-Louis, Jeff Mitchell, Steffen Miiller, Abhijit Menon-Sen, Walt Mankowski,
Wolfgang Laun, Paul Kulchenko, Daniel Koo, Andy Lester, David Landgren,
Robin Houston, Torsten Hofmann, Douglas Hunter, Francesc Guasch, Ken-
neth Graves, Jeff Goff, Michael Fischer, Simon Cozens, David Combs, Stas
Bekman, Greg Bacon, Darius Bacon, and Peter Allen. My apologies to the many
many helpful contributors whom I have deliberately omitted from this list in the
interests of space, and even more so to the several especially helpful contributors
whom I have accidentally omitted.

Wolfgang Laun and Per Westerlund were particularly assiduous in helping
me correct errors for the second printing.

Before I started writing, I received valuable advice about choosing a publisher
from Philip Greenspun, Brian Kernighan, and Adam Turoff. Damian Conway
and Abigail gave me helpful advice and criticism about my proposal.

Sean Burke recorded my Ivory Tower talk, cut CDs and sent them to me,
and also supplied RTF-related consulting at the last minute. He also sent me
periodic mail to remind me how wonderful my book was, which often arrived
at times when I wasn't so sure.

Several specific ideas in Chapter 4 were suggested by other people. Meng
Wong suggested the clever and apt “odometer” metaphor. Randal Schwartz
helped me with the “append” function. Eric Roode suggested the multiple list
iterator.

When I needed to read out-of-print books by Paul Graham, A. E. Sundstrom
lent them to me. When I needed a copy of volume 2 of The Art of Computer
Programming, Hildo Biersma and Morgan Stanley bought it for me. When I
needed money, B. B. King lent me some. Thanks to all of you.

The constraint system drawing program of Chapter 9 was a big project, and
I was stuck on it for a long time. Without the timely assistance of Wm Leler,
I might still be stuck.

Tom Christiansen, Jon Orwant, and Nat Torkington played essential and
irreplaceable roles in integrating me into the Perl community.

Finally, the list of things “without which this book could not have been
written” cannot be complete without thanking Larry Wall for writing Perl and
for founding the Perl community, without which this book could not have been
written.



CHAPTER

RECURSION AND
CALLBACKS

The first “advanced” technique we'll see is recursion. Recursion is a method of
solving a problem by reducing it to a simpler problem of the same type.

Unlike most of the techniques in this book, recursion is already well known
and widely understood. But it will underlie several of the later techniques, and
so we need to have a good understanding of its fine points.

I.] DECIMAL TO BINARY CONVERSION

Until the release of Per] 5.6.0, there was no good way to generate a binary numeral
in Perl. Starting in 5.6.0, you can use sprintf("%b", $num), but before that the
question of how to do this was Frequently Asked.

Any whole number has the form 2% + &, where £ is some smaller whole
number and 4 is either 0 or 1. & is the final bit of the binary expansion. It’s easy
to see whether this final bit is 0 or 1; just look to see whether the input number
is even or odd. The rest of the number is 24, whose binary expansion is the
same as that of 4, but shifted left one place. For example, consider the number
37 =2-18+ 15 here kis 18 and 4 is 1, so the binary expansion of 37 (100101)
is the same as that of 18 (10010), but with an extra 1 on the end.

How did I compute the expansion for 37? It is an odd number, so the final
bit must be 1; the rest of the expansion will be the same as the expansion of 18.
How can I compute the expansion of 18? 18 is even, so its final bit is 0, and
the rest of the expansion is the same as the expansion of 9. What is the binary
expansion for 9? 9 is odd, so its final bit is 1, and the rest of its binary expansion is
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the same as the binary expansion of 4. We can continue in this way, until finally
we ask about the binary expansion of 1, which of course is 1.

This procedure will work for any number. To compute the binary expansion
of a number 7 we proceed as follows:

1. Ifnis1, itsbinary expansionis 1, and we may ignore the rest of the procedure.
Similarly, if 7 is 0, the expansion is simply 0. Otherwise:

2. Compute 4 and & so that # = 2k 4 b and b = 0 or 1. To do this, simply
divide 7 by 2; k is the quotient, and & is the remainder, 0 if 7 was even, and
1 if 7 was odd.

3. Compute the binary expansion of 4, using this same method. Call the
result E.

4. 'The binary expansion for 7 is Eb.

Let’s build a function called binary() that calculates the expansion. Here is the
preamble, and step 1:

sub binary {
my ($n) = @_;

return $n if $n == 0 || $n == 1;

Here is step 2:

my $k = int($n/2);
my $b = $n % 2;

For the third step, we need to compute the binary expansion of k4. How can
we do that? It’s easy, because we have a handy function for computing binary
expansions, called binary() — or we will once we've finished writing it. We'll
call binary () with £ as its argument:

my $E = binary($k);

Now the final step is a string concatenation:

return $E . $b;

This works. For example, if you invoke binary(37), you get the string 100101.
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The essential technique here was to reduce the problem to a simpler case.
We were supposed to find the binary expansion of a number 7; we discovered
that this binary expansion was the concatenation of the binary expansion of a
smaller number 4 and a single bit 4. Then to solve the simpler case of the same
problem, we used the function binary() in its own definition. When we invoke
binary() with some number as an argument, it needs to compute binary() for
a different, smaller argument, which in turn computes binary() for an even
smaller argument. Eventually, the argument becomes 1, and binary() computes
the trivial binary representation of 1 directly.

This final step, called the base case of the recursion, is important. If we don't
consider it, our function might never terminate. If, in the definition of binaryQ),
we had omitted the line:

return $n if $n == [] $n == 1;

then binary() would have computed forever, and would never have produced
an answer for any argument.

1.2 FACTORIAL

Suppose you have a list of 7 different items. For concreteness, we'll suppose
that these items are letters of the alphabet. How many different orders are there
for such a list? Obviously, the answer depends on 7, so it is a function of 7.
This function is called the factorial function. The factorial of 7 is the number of
different orders for a list of 7 different items. Mathematicians usually write it as a
postfix (!) mark, so that the factorial of 7 is 7!. They also call the different orders

permutations.
Let’s compute some factorials. Evidently, there’s only one way to order a list
of one item, so 1! = 1. There are two permutations of a list of two items: A-B

and B-A, so 2! = 2. A little pencil work will reveal that there are six permutations
of three items:

C AB C BA
ACB BCA
AB C BA C

How can we be sure we didn’t omit anything from the list? It’s not hard to come
up with a method that constructs every possible ordering, and in Chapter 4 we
will see a program to list them all. Here is one way to do it. We can make any list
of three items by adding a new item to a list of two items. We have two choices

3
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for the two-item list we start with: AB and BA. In each case, we have three choices
about where to put the C: at the beginning, in the middle, or at the end. There
are 2 - 3 = 6 ways to make the choices together, and since each choice leads
to a different list of three items, there must be six such lists. The preceding left
column shows all the lists we got by inserting the C into AB, and the right column
shows the lists we got by inserting the C into BA, so the display is complete.

Similarly, if we want to know how many permutations there are of four
items, we can figure it out the same way. There are six different lists of three
items, and there are four positions where we could insert the fourth item into
each of the lists, for a total of 6 - 4 = 24 total orders:

D ABC D ACB D BAC D BCA D CAB D CBA
A D BC ADCB B D AC B D CA CD AB CDBA
AB D C ACDB BA D C BC D A CADB CBDA
ABC D ACB D BAC D BCA D CAB D CBA D

Now we'll write a function to compute, for any 7, how many permutations there
are of a list of 7 elements.

We've just seen that if we know the number of possible permutations of
n — 1 things, we can compute the number of permutations of 7 things. To make
a list of 7 things, we take one of the (n — 1)! lists of # — 1 things and insert
the nth thing into one of the 7 available positions in the list. Therefore, the total
number of permutations of 7 items is (7 — 1)! - n:

sub factorial {
my ($n) = @_;
return factorial($n-1) * $n;

Oops, this function is broken; it never produces a result for any input, because
we left out the termination condition. To compute factorial(2), it first tries
to compute factorial(1). To compute factorial(1), it first tries to compute
factorial(0). To compute factorial(0), it first tries to compute factorial (-1).
This process continues forever. We can fix it by telling the function explicitly what
0! is so that when it gets to 0 it doesn’t need to make a recursive call:

sub factorial {
my ($n) = @_;
return 1 if $n == 0;

return factorial($n-1) * $n;
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Now the function works properly.

It may not be immediately apparent why the factorial of 0 is 1. Let’s return to
the definition. factorial($n) is the number of different orders of a given list of
$n elements. factorial(2) is 2, because there are two ways to order a list of two
elements: (A", 'B') and ('B', 'A"). factorial(l) is 1, because there is only
one way to order a list of one element: ('A"). factorial(0) is 1, because there is
only one way to order a list of zero elements: (). Sometimes people are tempted
to argue that 0! should be 0, but the example of () shows clearly that it isn’t.

Getting the base case right is vitally important in recursive functions, because
if you get it wrong, it will throw off all the other results from the function. If we
were to erroneously replace return 1 in the preceding function with return 0,
it would no longer be a function for computing factorials; instead, it would be
a function for computing zero.

1.2.1 Why Private Variables Are Important

Let’s spend a little while looking at what happens if we leave out the my. The
following version of factorial() is identical to the previous version, except that
it is missing the my declaration on $n:

sub factorial {
($n) = @_;
return 1 if $n == 0;

return factorial($n-1) * $n;

Now $n is a global variable, because all Perl variables are global unless they are
declared with my. This means that even though several copies of factorial()
might be executing simultaneously, they are all using the same global variable $n.
What effect does this have on the function’s behavior?

Let’s consider what happens when we call factorial(1). Initially, $n is set to
1, and the test on the second line fails, so the function makes a recursive call to
factorial(0). Theinvocation of factorial(1) waitsaround for the new function
call to complete. When factorial(0) is entered, $n is set to 0. This time the test
on the second line is true, and the function returns immediately, yielding 1.

The invocation of factorial(l) that was waiting for the answer to
factorial(0) can now continue; the result from factorial(0) is 1. factorial (1)
takes this 1, multiplies it by the value of $n, and returns the result. But $n is now
0, because factorial(0) set it to 0, so the result is 1 - 0 = 0. This is the final,
incorrect return value of factorial(1). It should have been 1, not 0.

CODE LIBRARY

factorial-broken
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Similarly, factorial(2) returns O instead of 2, factorial(3) returns 0
instead of 6, and so on.

In order to work properly, each invocation of factorial() needs to have its
own private copy of $n that the other invocations won't interfere with, and that’s
exactly what my does. Each time factorial() is invoked, a new variable is created
for that invocation to use as its $n.

Other languages that support recursive functions all have variables that work
something like Perl’s my variables, where a new one is created each time the func-
tion is invoked. For example, in C, variables declared inside functions have this
behavior by default, unless declared otherwise. (In C, such variables are called
auto variables, because they are automatically allocated and deallocated.) Using
global variables or some other kind of storage that isn’t allocated for each invo-
cation of a function usually makes it impossible to call that function recursively;
such a function is called non-reentrant. Non-reentrant functions were once quite
common in the days when people used languages like Fortran (which didn’t sup-
port recursion until 1990) and became less common as languages with private
variables, such as C, became popular.

1.3 THE TOWER OF HANOI

Both our examples so far have not actually required recursion; they could both
be rewritten as simple loops.

This sort of rewriting is always possible, because after all, the machine lan-
guage in your computer probably doesn’t support recursion, so in some sense it
must be inessential. For the factorial function, the rewriting is easy, but this isn't
always so. Here’s an example. It's a puzzle that was first proposed by Edouard
Lucas in 1883, called the Tower of Hanoi.

The puzzle has three pegs, called A, B, and C. On peg A is a tower of disks
of graduated sizes, with the largest on the bottom and the smallest on the top
(see Figure 1.1).

The puzzle is to move the entire tower from A to C, subject to the following
restrictions: you may move only one disk at a time, and no disk may ever rest
atop a smaller disk. The number of disks varies depending on who is posing the
problem, but it is traditionally 64. We will try to solve the problem in the general
case, for 7 disks.

Let’s consider the largest of the 7 disks, which is the one on the bottom.
We'll call this disk “the Big Disk.” The Big Disk starts on peg A, and we want it
to end on peg C. If any other disks are on peg A, they are on top of the Big Disk,
so we will not be able to move it. If any other disks are on peg C, we will not be
able to move the Big Disk to C because then it would be atop a smaller disk. So if
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FIGURE LI The initial configuration of the Tower of Hanoi.

LN

FIGURE 1.2 An intermediate stage of the Tower of Hanoi.

we want to move the Big Disk from A to C, all the other disks must be heaped
up on peg B, in size order, with the smallest one on top (see Figure 1.2).

This means that to solve this problem, we have a subgoal: we have to move
the entire tower of disks, except for the Big Disk, from A to B. Only then we
can transfer the Big Disk from A to C. After we've done that, we will be able to
move the rest of the tower from B to C; this is another subgoal.

Fortunately, when we move the smaller tower, we can ignore the Big Disk; it
will never get in our way no matter where it is. This means that we can apply the
same logic to moving the smaller tower. At the bottom of the smaller tower is a
large disk; we will move the rest of the tower out of the way, move this bottom
disk to the right place, and then move the rest of the smaller tower on top of it.
How do we move the rest of the smaller tower? The same way.

The process bottoms out when we have to worry about moving a smaller
tower that contains only one disk, which will be the smallest disk in the whole
set. In that case our subgoals are trivial, and we just put the little disk wherever
we need to. We know that there will never be anything on top of it (because that

7
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would be illegal) and we know that we can always move it wherever we like; it’s
the smallest, so it is impossible to put it atop anything smaller.

Our strategy for moving the original tower looks like this:

To move a tower of 7 disks from the start peg to the end peg,

1. If the “tower” is actually only one disk high, just move it. Otherwise:

2. Move all the disks except for disk 7 (the Big Disk) from the start peg to the
extra peg, using this method.

Move disk 7 (the Big Disk) from the start peg to the end peg.
4. Moveall the other disks from the extra peg to the end peg, using this method.

It’s easy to translate this into code:

# hanoi(N, start, end, extra)
# Solve Tower of Hanoi problem for a tower of N disks,
# of which the Targest is disk #N. Move the entire tower from
# peg 'start' to peg 'end', using peg 'extra' as a work space
sub hanoi {

my ($n, $start, $end, $extra) = @_;

if ($n == 1) {
print "Move disk #1 from $start to $end.\n"; # Step 1
} else {
hanoi($n-1, $start, $extra, $end); # Step 2
print "Move disk #$n from $start to $end.\n"; # Step 3
hanoi($n-1, $extra, $end, $start); # Step 4
}

This function prints a series of instructions for how to move the tower.
For example, to ask it for instructions for moving a tower of three disks, we
call it like this:

hanoi(3, 'A', 'C', 'B');
Its output is:

Move disk #1 from A to C.

Move disk #2 from A to B.

Move disk #1 from C to B.
Move disk #3 from A to C.
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Move disk #1 from B to A.
Move disk #2 from B to C.
Move disk #1 from A to C.

If we wanted a graphic display of moving disks instead of a simple printout
of instructions, we could replace the print statements with something fancier.
But we can make the software more flexible almost for free by parametrizing
the output behavior. Instead of having a print statement hardwired in, hanoi ()
will accept an extra argument that is a function that will be called each time
hanoi () wants to move a disk. This function will print an instruction, or update
a graphical display, or do whatever else we want. The function will be passed
the number of the disk, and the source and destination pegs. The code is almost
exactly the same:

sub hanoi {
my ($n, $start, $end, $extra, $move_disk) = @_;

if ($n == 1) {
$move_disk->(1, $start, $end);
} else {

hanoi($n-1, $start, $extra, $end, $move_disk);
$move_disk->($n, $start, $end);
hanoi($n-1, S$extra, $end, $start, $move_disk);

To get the behavior of the original version, we now invoke hanoi () like this:

sub print_instruction {
my ($disk, $start, $end) = @_;
print "Move disk #$disk from $start to $end.\n";

hanoi(3, 'A', 'C', 'B', \&print_instruction);

The \&print_instruction expression generates a code reference, which is a scalar
value that represents the function. You can store the code reference in a scalar
variable just like any other scalar, or pass it as an argument just like any other
scalar, and you can also use the reference to invoke the function that it represents.
To do that, you write:

$code_reference->(arguments...);

9
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This invokes the function with the specified arguments.! Code references are
often referred to as coderefs.

The coderef argument to hanoi Q) is called a callback, because it is a function
supplied by the caller of hanoi() that will be “called back” to when hanoi ()
needs help. We sometimes also say that the $move_disk argument of hanoi()
is a hook, because it provides a place where additional functionality may easily
be hung.

Now that we have a generic version of hanoi (), we can test the algorithm
by passing in a $move_disk function that keeps track of where the disks are and
checks to make sure we aren’t doing anything illegal:

@position = ('', ('A'") x 3); # Disks are all initially on peg A

sub check_move {
my $i;
my ($disk, $start, $end) = @_;

The check_move () function maintains an array, @osition, that records the cur-
rent position of every disk. Initially, every disk is on peg A. Here we assume
that there are only three disks, so we set $position[1], $position[2], and
$position[3] to "A". $position[0] is a dummy element that is never used
because there is no disk 0. Each time the main hanoi () function wants to move
a disk, it calls check_move ().

if ($disk < 1 || $disk > $#position) {
die "Bad disk number $disk. Should be 1..$#position.\n";

This is a trivial check to make sure that hanoi ) doesn’t try to move a nonexistent

disk.

unless ($position[$disk] eq $start) {
die "Tried to move disk $disk from $start, but it is on peg
$position[$disk].\n";

This notation was introduced in Perl 5.004; users of 5.003 or earlier will have to use a much
uglier notation instead: &{$code_reference}(arguments...);. When the $code_reference
expression is a simple variable, as in the example, the cutly braces may be omitted.
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Here the function checks to make sure that hanoi () is not trying to move a disk
from a peg where it does not reside. If the start peg does not match check_move )’s
notion of the current position of the disk, the function signals an error.

for $i (1 .. $disk-1) {
if ($position[$i] eq $start) {

die "Can't move disk $disk from $start because $i is on top of it.\n";

} elsif ($position[$i] eq $end) {

die "Can't move disk $disk to $end because $i 1is already there.\n";

This is the really interesting check. The function loops over all the disks that are
smaller than the one hanoi () is trying to move, and makes sure that the smaller
disks aren’t in the way. The first 1f branch makes sure that each smaller disk is
not on top of the one hanoi () wants to move, and the second branch makes sure
that hanoi Q) is not trying to move the current disk onto the smaller disk.

print "Moving disk $disk from $start to $end.\n";
$position[$disk] = $end;

Finally, the function has determined that there is nothing wrong with the move,
so it prints out a message as before, and adjusts the @position array to reflect the
new position of the disk.

Running:

hanoi(3, 'A', 'C', 'B', \&check_move);

yields the same output as before, and no errors— hanoi ) is not doing anything
illegal.

This example demonstrates a valuable technique we'll see over and over again:
by parametrizing some part of a function to call some other function instead of
hardwiring the behavior, we can make it more flexible. This added flexibility will
pay off when we want the function to do something a little different, such as
performing an automatic self-check. Instead of having to clutter up the function
with a lot of optional self-testing code, we can separate the testing part from the
main algorithm. The algorithm remains as clear and simple as ever, and we can
enable or disable the self-checking code at run time if we want to, by passing a
different coderef argument.

11
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1.4 HIERARCHICAL DATA

The examples we've seen give the flavor of what a recursive procedure looks like,
but they miss an important point. In introducing the Tower of Hanoi problem,
I said that recursion is useful when you want to solve a problem that can be
reduced to simpler cases of the same problem. But it might not be clear that such
problems are common.

Most recursive functions are built to deal with recursive data structures. A
recursive data structure is one like a list, tree, or heap that is defined in terms
of simpler instances of the same data structure. The most familiar example is
probably a file system directory structure. A file is either:

* aplain file, which contains some data, or

* adirectory, which contains a list of files

A file might be a directory, which contains a list of files, some of which might be
directories, which in turn contain more lists of files, and so on. The most effective
way of dealing with such a structure is with a recursive procedure. Conceptually,
each call to such a procedure handles a single file. The file might be a plain file,
or it might be a directory, in which case the procedure makes recursive calls to
itself to handle any subfiles that the directory has. If the subfiles are themselves
directories, the procedure will make more recursive calls.

Here’s an example of a function that takes the name of a directory as its
argument and computes the total size of all the files contained in it, and in its
subdirectories, and in their subdirectories, and so on:

sub total_size {
my ($top) = @_;
my $total = -s $top;

When we first call the function, it’s with an argument $top, which is the name of
the file or directory we want to examine. The first thing the function does is use
the Perl -s operator to find the size of this file or directory itself. This operator
yields the size of the file, in bytes. If the file is a directory, it says how much space
the directory itself takes up on the disk, apart from whatever files the directory
may contain— the directory is a list of files, remember, and the list takes up
some space too. If the top file is actually a directory, the function will add the
sizes of its contents to a running total that it will keep in $total.

return $total if -f $top;
unless (opendir DIR, $top) {
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warn "Couldn’t open directory $top: $!; skipping.\n";
return $total;

The - f operator checks to see if the argument is a plain file; if so, the function can
return the total immediately. Otherwise, it assumes that the top file is actually a
directory, and tries to open it with opendir(). If the directory can’t be opened,
the function issues a warning message and returns the total so far, which includes
the size of the directory itself, but not its contents.

my $file;

while ($file = readdir DIR) {
next if $file eq '.' || $file eq '.."';
$total += total_size("$top/$file™);

}

The next block, the while loop, is the heart of the function. It reads filenames
from the directory one at a time, calls itself recursively on each one, and adds the
result to the running total.

closedir DIR;

return $total;

At the end of the loop, the function closes the directory and returns the
total.

In the loop, the function skips over the names . and . ., which are aliases for
the directory itself and for its pareng; if it didn’t do this, it would never finish,
because it would try to compute the total sizes of a lot of files with names like
.J./././././fredand dir/../dir/../dir/../dir/fred.

This function has a gigantic bug, and in fact it doesnt work at all. The
problem is that directory handles, like DIR, are global, and so our function is not
reentrant. The function fails for essentially the same reason that the my-less version
of factorial() failed. The first call goes ahead all right, but if total_size()
calls itself recursively, the second invocation will open the same dirhandle DIR.
Eventually, the second invocation will reach the end of its directory, close DIR,
and return. When this happens, the first invocation will try to continue, find that
DIR has been closed, and exit the while loop without having read all the filenames
from the top directory. The second invocation will have the same problem if it
makes any recursive calls itself.

13
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The result is that the function, as written, looks down only the first branch
of the directory tree. If the directory hierarchy has a structure like this:

then our function will go down the top-a-d path, see files j and 4, and report the
total size of rop + a + d + j + k, without ever noticing b, ¢, ¢, f, g, b, 7, or L.

To fix it, we need to make the directory handle DIR a private variable, like $top
and $total. Instead of opendir DIR, $top, we'll use opendir $dir, $top, where
$dir is a private variable. When the first argument to opendir is an undefined
variable, opendir will create a new, anonymous dirhandle and store it into $dir.?

Instead of doing this:

opendir DIR, $somedir;
print (readdir DIR);
closedir DIR;

we can get the same effect by doing this instead:

my $dir;
opendir $dir, $somedir;
print (readdir $dir);

closedir $dir;

The big difference is that DIR is a global dirhandle, and can be read or closed by
any other part of the program; the dirhandle in $dir is private, and can be read

2 This feature was introduced in Perl 5.6.0. Users of earlier Perl versions will have to use
the I0::Handle module to explicitly manufacture a dirhandle: my $dir = I0::Handle->new;
opendir $dir, $top;.
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or closed only by the function that creates it, or by some other function that is
explicitly passed the value of $dir.

With this new technique, we can rewrite the total_size() function so that
it works properly:

sub total_size {
my ($top) = @_;
my $total = -s $top;
my $DIR;

return $total if -f $top;

unless (opendir $DIR, $top) {
warn "Couldn’t open directory $top: $!; skipping.\n";
return $total;

}

my $file;

while ($file = readdir $DIR) {
next if $file eq '."' || $file eq '.."';
$total += total_size("$top/$file™);

}

closedir $DIR;
return $total;

Actually, the closedir here is unnecessary, because dirhandles created with this
method close automatically when the variables that contain them go out of scope.
When total_size() returns, its private variables are destroyed, including $DIR,
which contains the last reference to the dirhandle object we opened. Perl then
destroys the dirhandle object, and in the process, closes the dirhandle. We will
omit the explicit closedir in the future.

This function still has some problems: it doesn’t handle symbolic links cor-
rectly, and if a file has two names in the same directory, it gets counted twice.
Also, on Unix systems, the space actually taken up by a file on disk is usually
different from the length reported by -s, because disk space is allocated in blocks
of 1024 bytes at a time. But the function is good enough to be useful, and
we might want to apply it to some other tasks as well. If we do decide to fix
these problems, we will need to fix them only in this one place, instead of fixing
the same problems in fifty slightly different directory-walking functions in fifty
different applications.

CODE LIBRARY

total-size
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1.5 APPLICATIONS AND VARIATIONS OF
DIRECTORY WALKING

Having a function that walks a directory tree is useful, and we might like to use
it for all sorts of things. For example, if we want to write a recursive file lister
that works like the Unix 1s -R command, we'll need to walk the directory tree.
We might want our function to behave more like the Unix du command, which
prints out the total size of every subdirectory, as well as the total for all the files it
found. We might want our function to search for dangling symbolic links; that
is, links that point to nonexistent files. A frequently asked question in the Perl
newsgroups and IRC channels is how to walk a directory tree and rename each
file or perform some other operation on each file.

We could write many different functions to do these tasks, each one a little
different. But the core part of each one is the recursive directory walker, and we'd
like to abstract that out so that we can use it as a tool. If we can separate the
walker, we can put it in a library, and then anyone who needs a directory walker
can use ours.

An important change of stance occurred in the last paragraph. Starting from
here, and for most of the rest of the book, we are going to take a point of
view that you may not have seen before: we are no longer interested in devel-
oping a complete program that we or someone else might use entirely. Instead,
we are going to try to write our code so that it is useful to another program-
mer who might want to re-use it in another program. Instead of writing a
program, we are now writing a library or module that will be used by other
programs.

One direction that we could go from here would be to show how to write
a user interface for the total_size() function, which might prompt the user for
a directory name, or read a directory name from the command line or from a
graphical widget, and then would display the result somehow. We are not going
to do this. It is not hard to add code to prompt the user for a directory name
or to read the command-line arguments. For the rest of this book, we are not
going to be concerned with user interfaces; instead, we are going to look at
programmer interfaces. The rest of the book will talk about “the user,” but it’s not
the usual user. Instead, the user is another programmer who wants to use our
code when writing their own programs. Instead of asking how we can make our
entire program simple and convenient for an end-user, we will look at ways to
make our functions and libraries simple and convenient for other programmers
to use in their own programs.

There are two good reasons for doing this. One is that if our functions
are well designed for easy re-use, we will be able to re-use them ourselves and
save time and trouble. Instead of writing similar code over and over, we'll plug a
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familiar directory-walking function into every program that needs one. When we
improve the directory-walking function in one program, it will be automatically
improved in all our other programs as well. Over time, we'll develop a toolkit of
useful functions and libraries that will make us more productive, and we’ll have
more fun programming.

But more importantly, if our functions are well designed for re-use, other
programmers will be able to use them, and they will get the same benefits that
we do. And being useful to other people is the reason were here in the first
place.’

With that change of stance clearly in mind, let’s go on. We had written
a function, total_size(), which contained useful functionality: it walked a
directory tree recursively. If we could cleanly separate the directory-walking part
of the code from the total-size-computing part, then we might be able to re-use
the directory-walking part in many other projects for many other purposes. How
can we separate the two functionalities?

As in the Tower of Hanoi program, the key here is to pass an additional
parameter to our function. The parameter will itself be a function that tells
total_size() what we want it to do. The code will look like this:

sub dir_walk {
my ($top, $code) = @_;
my $DIR;

$code->($top);

if (-d $top) {
my $file;
unless (opendir $DIR, $top) {
warn "Couldn’t open directory $top: $!; skipping.\n";

return;

}

while ($file = readdir $DIR) {
next if $file eq '.' || $file eq '.."';
dir_walk("$top/$file", $code);

}

Some people find this unpersuasive, so perhaps I should point out that if we make ourselves useful
to other people, they will love and admire us, and they might even pay us more.

CODE LIBRARY

dir-walk-simple
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This function, which I've renamed dir_walk() to honor its new generality, gets
two arguments. The first, $top, is the name of the file or directory that we want
it to start searching in, as before. The second, $code, is new. It’s a coderef that
tells dir_walk what we want to do for each file or directory that we discover in
the file tree. Each time dir_walk () discovers a new file or directory, it will invoke
our code with the filename as the argument.

Now whenever we meet another programmer who asks us, “How do I do X
for every file in a directory tree?” we can answer, “Use this dir_walk () function,
and give it a reference to a function that does X.” The $code argument is a
callback.

For example, to get a program that prints out a list of all the files and
directories below the current directory, we can use:

sub print_dir {
print $_[0], "\n";

dir_walk('."', \&print_dir );

This prints out something like this:

./a
./a/al
./a/a2
./b
./b/bl
./c
./c/cl
./c/c2
./c/c3
./c/d
./c/d/d1
./c/d/d2

(The current directory contains three subdirectories, named a, b, and c. Sub-
directory c contains a sub-subdirectory, named d.)

print_dir is so simple that it’s a shame to have to waste time thinking of a
name for it. It would be convenient if we could simply write the function without
having to write a name for it, analogous to the way we can write:

$weekly_pay = 40 * $hourly_pay;
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without having to name the 40 or store it in a variable. Perl does provide a syntax
for this:

dir_walk('.', sub { print $_[0], "\n" } );
The sub { ... } introduces an anonymous function; that is, a function with no
name. The value of the sub { ... } construction is a coderef that can be used

to call the function. We can store this coderef in a scalar variable or pass it as
an argument to a function like any other reference. This one line does the same
thing as our more verbose version with the named print_dir function.

If we want the function to print out sizes along with filenames, we need only
make a small change to the coderef argument:

dir_walk('."', sub { printf "%6d %s\n", -s $_[0], $_[0] } );

4096 .
4096 ./a

261 ./a/al
171 ./a/a2
4096 ./b

348 ./b/bl
4096 ./c

658 ./c/cl
479 ./c/c2
889 ./c/c3
4096 ./c/d
568 ./c/d/d1
889 ./c/d/d2

If we want the function to locate dangling symbolic links, it’s just as easy:
dir_walk('.', sub { print $_[0], "\n" if -1 $_[0] && ! -e $_[0] });

-1 tests the current file to see if it’s a symbolic link, and -e tests to see if the file
that the link points at exists.

But my promises fall a little short. There’s no simple way to get the new
dir_walk() function to aggregate the sizes of all the files it sees. $code is invoked
for only one file at a time, so it never gets a chance to aggregate. If the aggregation
is sufficiently simple, we can accomplish it with a variable defined outside the

callback:

my $TOTAL = 0;

19
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dir_walk('."', sub { $TOTAL += -s $_[0] });
print "Total size is $TOTAL.\n";

There are two drawbacks to this approach. One is that the callback function
must reside in the scope of the $TOTAL variable, as must any code that plans to
use $TOTAL. Often this isn’t a problem, as in this case, but if the callback were a
complicated function in a library somewhere, it might present difficulties. We'll
see a solution to this problem in Section 2.1.

The other drawback is that it works well only when the aggregation is
extremely simple, as it is here. Suppose instead of accumulating a single total
size, we wanted to build a hash structure of filenames and sizes, like this one:

{
'a' = {
'al' => '261"',
'a2' => '171°'
1,
'b' => {
'bl' => '348'
1,
'c' = {
'cl' => '658',
'c2' => '479',
'c3' => '889',
'd' o= {
'dl' => '568',
'd2' => '889'
}
}
}

Here the keys are file and directory names. The value for a filename is the size
of the file, and the value for a directory name is a hash with keys and values
that represent the contents of the directory. It may not be clear how we could
adapt the simple $TOTAL-aggregating callback to produce a complex structure like
this one.

Our dir_walk function is not general enough. We need it to perform some
computation involving the files it examines, such as computing their total size,
and to return the result of this computation to its caller. The caller might be the
main program, or it might be another invocation of dir_walk ), which can then
use the value it receives as part of the computation it is performing for 7#s caller.
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How can dir_walk() know how to perform the computation? In
total_size(), the addition computation was hardwired into the function. We
would like dir_walk) to be more generally useful.

What we need is to supply two functions: one for plain files and one for
directories. dir_walk () will call the plain-file function when it needs to compute
its result for a plain file, and it will call the directory function when it needs to
compute its result for a directory. dir_walk() wont know anything about how
to do these computations itself; all it knows is that is should delegate the actual
computing to these two functions.

Each of the two functions will get a filename argument, and will compute
the value of interest, such as the size, for the file named by its argument. Since a
directory is a list of files, the directory function will also receive a list of the values
that were computed for each of its members; it may need these values when it
computes the value for the entire directory. The directory function will know
how to aggregate these values to produce a new value for the entire directory.

With this change, we'll be able to do our total_size operation. The plain-file
function will simply return the size of the file it’s asked to look at. The directory
function will get a directory name and a list of the sizes of each file that it contains,
add them all up, and return the result. The generic framework function looks

like this:

sub dir_walk {
my ($top, $filefunc, $dirfunc) = @_;
my $DIR;

if (-d $top) {
my $file;
unless (opendir $DIR, $top) {
warn "Couldn’t open directory $code: $!; skipping.\n";
return;

my @results;
while ($file = readdir $DIR) {
next if $file eq '.' || $file eq '.."';
push @results, dir_walk("$top/$file", $filefunc, $dirfunc);
}
return $dirfunc->($top, @results);
} else {
return $filefunc->($top);

CODE LIBRARY

dir-walk-cb
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To compute the total size of the current directory, we will use this:

sub file_size { -s $_[0] }

sub dir_size {
my $dir = shift;
my $total = -s $dir;
my $n;
for $n (@) { $total += $n }
return $total;

$total_size = dir_walk('.', \&file_size, \&dir_size);

The file_size() function says how to compute the size of a plain file, given its
name, and the dir_size() function says how to compute the size of a directory,
given the directory name and the sizes of its contents.

If we want the program to print out the size of every subdirectory, the way
the du command does, we add one line:

sub file_size { -s $_[0] }

sub dir_size {
my $dir = shift;
my $total = -s $dir;
my $n;
for $n (@) { $total += $n }
printf "%6d %s\n", $total, $dir;
return $total;

$total_size = dir_walk('.', \&file_size, \&dir_size);
This produces an output like this:

4528 ./a
4444 . /b
5553 ./c/d

11675 ./c

24743 .
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To get the function to produce the hash structure we saw earlier, we can supply

the following pair of callbacks:

sub file {
my $file = shift;
[short($file), -s $filel;

sub short {
my $path = shift;
$path =~ s{.*/}{};
$path;

The file callback returns an array with the abbreviated name of the file (no full

path) and the file size. The aggregation is, as before, performed in the directory
callback:

sub dir {

my ($dir, @subdirs) = @_;

my %new_hash;

for (@subdirs) {
my ($subdir_name, $subdir_structure) = @$_;
$new_hash{$subdir_name} = $subdir_structure;

}

return [short($dir), \%new_hash];

The directory callback gets the name of the current directory, and a list of name—
value pairs that correspond to the subfiles and subdirectories. It merges these
pairs into a hash, and returns a new pair with the short name of the current
directory and the newly constructed hash for the current directory.

The simpler functions that we wrote before are still easy. Here’s the recursive
file lister. We use the same function for files and for directories:

sub print_filename { print $_[0], "\n" }
dir_walk('.", \&print_filename, \&print_filename);

Here’s the dangling symbolic link detector:

sub dangles {
my $file = shift;

CODE LIBRARY

dir-walk-sizehash



24 CHAPTER I Recursion and Callbacks

CODE LIBRARY

dir-walk-cb-def

print "$file\n" if -1 $file && ! -e $file;
}
dir_walk('.', \&dangles, sub {});

We know that a directory can’t possibly be a dangling symbolic link, so our
directory function is the null function that returns immediately without doing
anything. If we had wanted, we could have avoided this oddity, and its associated
function-call overhead, as follows:

sub dir_walk {
my ($top, $filefunc, $dirfunc) = @_;
my $DIR;
if (-d $top) {
my $file;
unless (opendir $DIR, $top) {
warn "Couldn’t open directory $top: $!; skipping.\n";

return;

my @results;
while ($file = readdir $DIR) {
next if $file eq '.' || $file eq '..";
push@results, dir_walk("$top/$file", $filefunc, $dirfunc);

}
return $dirfunc ? $dirfunc->($top, @results) : Q ;
} else {
return $filefunc ? $filefunc->($top): O ;
3
}
This allows us to write dir_walk('.', \&dangles) instead of dir_walk('.",

\&dangles, sub {}).
As a final example, let’s use dir_walk() in a slightly different way, to
manufacture a list of all the plain files in a file tree, without printing anything:

@l1_plain_files =
dir_walk('.', sub { $_[0] 3}, sub { shift; return @_ });

The file function returns the name of the file it’s invoked on. The directory func-
tion throws away the directory name and returns the list of the files it contains.
What if a directory contains no files at all? Then it returns an empty list to
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dir_walk(), and this empty list will be merged into the result list for the other
directories at the same level.

1.6 FUNCTIONAL VERSUS OBJECT-
ORIENTED PROGRAMMING

Now let’s back up a moment and look at what we did. We had a useful function,
total_size(), which contained code for walking a directory structure that was
going to be useful in other applications. So we made total_size() more general
by pulling out all the parts that related to the computation of sizes, and replacing
them with calls to arbitrary user-specified functions. The result was dir_walk Q.
Now, for any program that needs to walk a directory structure and do something,
dir_walk() handles the walking part, and the argument functions handle the “do
something” part. By passing the appropriate pair of functions to dir_walk(), we
can make it do whatever we want it to. We've gained flexibility and the chance
to re-use the dir_walk() code by factoring out the useful part and parametrizing
it with two functional arguments. This is the heart of the functional style of
programming,.

Object-oriented (OO) programming style gets a lot more press these days.
The goals of the OO style are the same as those of the functional style: we
want to increase the re-usability of software components by separating them into
generally useful parts.

In an OO system, we could have transformed total_size() analogously,
but the result would have looked different. We would have made total_size()
into an abstract base class of directory-walking objects, and these objects would
have had a method, dir_walk(), which in turn would make calls to two unde-
fined virtual methods called file and directory. (In C++ jargon, these are
called pure virtual methods.) Such a class wouldn’t have been useful by itself,
because the file and directory methods would be missing. To use the class, you
would create a subclass that defined the file and directory methods, and then
create objects in the subclass. These objects would all inherit the same dir_walk
method.

In this case, I think the functional style leads to a lighter-weight solution
that is easier to use, and that keeps the parameter functions close to the places
they are used instead of stuck off in a class file. But the important point is that
although the styles are different, the decomposition of the original function into
useful components has exactly the same structure. Where the functional style
uses functional arguments, the object-oriented style uses pure virtual methods.
Although the rest of this book is about the functional style of programming, many

25
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of the techniques will be directly applicable to object-oriented programming
styles also.

1.7 HTML

I promised that recursion was useful for operating on hierarchically defined data
structures, and I used the file system as an example. But it’s a slightly peculiar
example of a data structure, since we normally think of data structures as being
in memory, not on the disk.

What gave rise to the tree structure in the file system was the presence of
directories, each of which contains a list of other files. Any domain that has items
that include lists of other items will contain tree structures. An excellent example
is HTML data.

HTML data is a sequence of elements and plain text. Each element has some
content, which is a sequence of more elements and more plain text. This is a
recursive description, analogous to the description of the file system, and the
structure of an HTML document is analogous to the structure of the file system.

Elements are tagged with a szart rag, which looks like this:

<font>
and a corresponding end tag, like this:
</font>

The start tag may have a set of azzribute—value pairs, in which case it might look
something like this instead:

<font size=3 color="red">

The end tag is the same in any case. It never has any attribute—value pairs.
In between the start and end tags can be any sequence of HTML text,
including more elements, and also plain text. Here’s a simple example of an

HTML document:
<h1>What Junior Said Next</hl>

<p>But I don’t <font size=3 color="red">want</font>
to go to bed now!</p>

This document’s structure is shown in Figure 1.3.



(document)
| <h1> | | newlines | | <p> |
]
| What Junior Said Next | | But | don'tl | <font> | | to go to bed now! |

| want |

FIGURE 1.3 An HTML document.

The main document has three components: the <h1> element, with its con-
tents; the <p> element, with its contents; and the blank space in between. The
<p> element, in turn, has three components: the untagged text before the <font>
element; the <font> element, with its contents; and the untagged text after the
<font> element. The <h1> element has one component, which is the untagged
text What Junior Said Next.

In Chapter 8, we'll see how to build parsers for languages like HTML. In
the meantime, we'll look at a semi-standard module, HTML: : TreeBui1der, which
converts an HTML document into a tree structure.

Let’s suppose that the HTML data is already in a variable, say $htm1. The
following code uses HTML: : TreeBui 1der to transform the text into an explicit tree
structure:

use HTML::TreeBuilder;

my $tree = HTML::TreeBuilder->new;
$tree->ignore_ignorable_whitespace(0);
$tree->parse($html);

$tree->eof();

The ignore_ignorable_whitespace() method tells HTML: : TreeBuilder that it’s
not allowed to discard certain whitespace, such as the newlines after the <h1>
element, that are normally ignorable.

Now $tree represents the tree structure. It’s a tree of hashes; each hash is a
node in the tree and represents one element. Each hash has a _tag key whose
value is its tag name, and a _content key whose value is a list of the element’s
contents, in order; each item in the _content list is either a string, representing
tagless text, or another hash, representing another element. If the tag also has
attribute—value pairs, they’re stored in the hash directly, with attributes as hash
keys and the corresponding values as hash values.

17 HTML
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CODE LIBRARY

untag-html

So for example, the tree node that corresponds to the <font> element in the
example looks like this:

{ _tag => "font",
_content => [ "want" ],
color => "red",

size => 3,

The tree node that corresponds to the <p> element contains the <font> node,

and looks like this:

{ _tag => "p",
_content => [ "But I don't ",
{ _tag => "font",
_content => [ "want" ],
color => "red",
size => 3,
1,

1,

to go to bed now!",

It’s not hard to build a function that walks one of these HTML trees and “untags”
all the text, stripping out the tags. For each item in a _content list, we can
recognize it as an element with the ref() function, which will yield true for
elements (which are hash references) and false for plain strings:

sub untag_html {
my ($html) = @_;
return $html unless ref $html; # It’s a plain string

[

my $text = ;
for my $item (@{$html->{_content}}) {
$text .= untag_html($item);

return $text;

The function checks to see if the HTML item passed in is a plain string, and
if so the function returns it immediately. If it’s not a plain string, the function



assumes that it is a tree node, as described above, and iterates over its content,
recursively converting each item to plain text, accumulating the resulting strings,
and returning the result. For our example, this is:

What Junior Said Next But I don't want to go to bed now!

Sean Burke, the author of HTML: : TreeBui 1der, tells me that accessing the internals
of the HTML: : TreeBui1der objects this way is naughty, because he might change
them in the future. Robust programs should use the accessor methods that the
module provides. In these examples, we will continue to access the internals
directly.

We can learn from dir_walk() and make this function more useful by sepa-
rating it into two parts: the part that processes an HTML tree, and the part that
deals with the specific task of assembling plain text:

sub walk_html {
my ($html, $textfunc, $elementfunc) = @_;
return $textfunc->($html) unless ref $html; # It’s a plain string

my @results;
for my $item (@{$html1->{_content}}) {

push @results, walk_html($item, $textfunc, $elementfunc);
}

return $elementfunc->($html, @results);

This function has exactly the same structure as dir_walk(. It gets two auxiliary
functions as arguments: a $textfunc that computes some value of interest for a
plain text string, and an $elementfunc that computes the corresponding value
for an element, given the element and the values for the items in its content.
$textfunc is analogous to the $filefunc from dir_walk(), and $elementfunc is
analogous to the $dirfunc.

Now we can write our untagger like this:

walk_htm1($tree, sub { $_[0] },
sub { shift; join '', @_ });

The $textfunc argument is a function that returns its argument unchanged.
The $elementfunc argument is a function that throws away the element itself,
then concatenates the texts that were computed for its contents, and returns the
concatenation. The output is identical to that of untag_htm10.

17 HTML 29

CODE LIBRARY

walk-html
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Suppose we want a document summarizer that prints out the text that is
inside of <h1> tags and throws away everything else:

sub print_if_hltag {
my $element = shift;
my $text = join '', @_;
print $text if $element->{_tag} eq 'hl’';
return $text;

}
walk_htm1($tree, sub { $_[0] }, \&print_if_hltag);

This is essentially the same as untag_htm1 (), except that when the element func-
tion sees that it is processing an <h1> element, it prints out the untagged text.

If we want the function to rezurn the header text instead of printing it out,
we have to get a little trickier. Consider an example like this:

<h1>Junior</h1l>

Is a naughty boy.

We would like to throw away the text Is a naughty boy, so that it doesn’t appear
in the result. But to walk_htm10Q), it is just another plain text item, which looks
exactly the same as Junior, which we don’ want to throw away. It might seem
that we should simply throw away everything that appears inside a non-header
tag, but that doesn’t work:

<h1>The story of <b>Junior</b></hl>

We mustnt throw away Junior here, just because he’s inside a <b> tag, because
that <b> tag is itself inside an <h1> tag, and we want to keep it.

We could solve this problem by passing information about the current tag
context from each invocation of walk_htm1() to the next, but it turns out to be
simpler to pass information back the other way. Each text in the file is either a
“keeper,” because we know it’s inside an <h1> element, or a “maybe,” because
we don’t. Whenever we process an <h1> element, we'll promote all the “maybes”
that it contains to “keepers.” At the end, we'll print the keepers and throw away

the maybes:
@tagged_texts = walk_html($tree, sub { ['MAYBE', $_[0]] },
extract-headers \&promote_if_hltag);

sub promote_if_hltag {



my $element = shift;
if ($element->{_tag} eq 'hl") {

return ['KEEPER', join '', map {$_->[1]} @_];
} else {

return @_;

}

The return value from walk_htm1() will be a list of labeled text items. Each text
item is an anonymous array whose first element is either MAYBE or KEEPER, and
whose second item is a string. The plain text function simply labels its argument
asaMAYBE. For the string Junior, it returns the labeled item ['MAYBE', 'Junior'l;
for the string Is a naughty boy., it returns ['MAYBE', 'Is a naughty boy.'].

The element function is more interesting. It gets an element and a list of
labeled text items. If the element represents an <h1> tag, the function extracts
all the texts from its other arguments, joins them together, and labels the result
as a KEEPER. If the element is some other kind, the function returns its tagged
texts unchanged. These texts will be inserted into the list of labeled texts that are
passed to the element function call for the element that is one level up; compare
this with the final example of dir_walkQ in Section 1.5, which returned a list of
filenames in a similar way.

Since the final return value from walk_htm1() is a list of labeled texts, we
need to filter them and throw away the ones that are still marked MAYBE. This final
pass is unavoidable. Since the function treats an untagged text item differently
at the top level than it does when it is embedded inside an <h1> tag, there must
be some part of the process that understands when something is at the top level.
walk_htm1() can’t do that because it does the same thing at every level. So we
must build one final function to handle the top-level processing:

sub extract_headers {

my $tree = shift;

my @tagged_texts = walk_html($tree, sub { ['MAYBE', $_[0]] },

\&promote_if_hltag);

my @keepers = grep { $_->[0] eq 'KEEPER'} @tagged_texts;

my @keeper_text = map { $_->[1] } @keepers;

my $header_text = join '', @keeper_text;
return $header_text;

}
Or we could write it more compactly:

sub extract_headers {
my $tree = shift;

17 HTML
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my @tagged_texts = walk_html($tree, sub { ['MAYBE', $_[0]] },
\&promote_if_hltag);
join "', map { $_->[1] } grep { $_->[0] eq 'KEEPER'} @tagged_texts;

1.7.1 More Flexible Selection

We just saw how to extract all the <h1>-tagged text in an HTML document. The
essential procedure was promote_if_h1ltag(). But we might come back next time
and want to extract a more detailed summary, which included all the text from
<h1>, <h2>, <h3>, and any other <h> tags present. To get this, we'd need to make
a small change to promote_if_h1ltag() and turn it into a new function:

sub promote_if_hltag {
my $element = shift;
if ($element->{_tag} =~ /"h\d+$/) {
return ['KEEPER', join '', map {$_->[1]} @_];
} else {
return @_;

But if promote_if_h1tag is more generally useful than we first realized, it will be a
good idea to factor out the generally useful part. We can do that by parametrizing
the part that varies:

CODE LIBRARY sub promote_if {

promote-if my $is_interesting = shift;
my $element = shift;
if ($is_interesting->($element->{_tag}) {
return ['KEEPER', join '', map {$_->[1]} @_];
} else {
return @_;

Now instead of writing a special function, promote_if_hltag(), we can express
the same behavior as a special case of promote_if(). Instead of the following:

my @tagged_texts = walk_html($tree, sub { ['maybe', $_[0]] },
\&promote_if_hltag);
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we can use this:

my @tagged_texts = walk_html($tree,
sub { ['maybe', $_[01] },
sub { promote_if(
sub { $_[0] eq 'h1'},
$_[0D
i3H

We'll see a tidier way to do this in Chapter 7.

1.8 WHEN RECURSION BLOWS UP

Sometimes a problem appears to be naturally recursive, and then the recursive
solution is grossly inefficient. A very simple example arises when you want to
compute Fibonacci numbers. This is a rather unrealistic example, but it has the
benefit of being very simple. We'll see a more practical example of the same thing
in Section 3.7.

1.8.1 Fibonacci Numbers

Fibonacci numbers are named for Leonardo of Pisa, whose nickname was
Fibonacci, who discussed them in the 13th century in connection with a
mathematical problem about rabbits. Initially, you have one pair of baby rabbits.
Baby rabbits grow to adults in one month, and the following month they produce
a new pair of baby rabbits, making two pairs:

Pairs of Pairs of Total

Month baby rabbits adult rabbits pairs
1 1 0 1
2 0 1 1
3 1 1 2

The following month, the baby rabbits grow up and the adults produce a new
pair of babies:

4 1 2 3

The month after that, the babies grow up, and the two pairs of adults each
produce a new pair of babies:

5 2 3 5
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Assuming no rabbits die, and rabbit production continues, how many pairs of
rabbits are there in each month?

Let A(n) be the number of pairs of adults alive in month 7 and B(n) be the
number of pairs of babies alive in month 7. The total number of pairs of rabbits
alive in month », which we'll call 7(#), is therefore A(n) + B(n):

T (n) = A(n) + B(n)

It’s not hard to see that the number of baby rabbits in one month is equal to the
number of adult rabbits the previous month, because each pair of adults gives
birth to one pair of babies. In symbols, this is B() = A(n — 1). Substituting into
our formula, we have:

T(n) =An)+An—1)

Each month the number of adult rabbits is equal to the total number of
rabbits from the previous month, because the babies from the previous month
grow up and the adults from the previous month are still alive. In symbols, this
is A(n) = T(n — 1). Substituting into the previous equation, we get:

Tn)=Th—1)+T(n-2)

So the total number of rabbits in month 7 is the sum of the number of rabbits
in months #» — 1 and #» — 2. Armed with this formula, we can write down the
function to compute the Fibonacci numbers:

# Compute the number of pairs of rabbits alive in month n
fib .
! sub fib {

my ($month) = @_;
if ($month < 2) { 1}
else {

fib($month-1) + fib($month-2);
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This is perfectly straightforward, but it hasa problem: except for small arguments,
it takes forever.* If you ask for fib(25), for example, it needs to make recursive
calls to compute fib(24) and fib(23). But the call to fib(24) also makes a
recursive call to fib(23), as well as another to compute fib(22). Both calls to
fib(23) will also call fib(22), for a total of three times. It turns out that fib(21)
is computed 5 times, fib(20) is computed 8 times, and fib(19) is computed
13 times.

All this computing and recomputing has a heavy price. On my small com-
puter, it takes about four seconds to compute fib(25); it makes 242,785 recursive
calls while doing so. It takes about 6.5 seconds to compute fib(26), and makes
392,835 recursive calls, and about 10.5 seconds to make the 635,621 recursive
calls for fib(27). It takes as long to compute fib(27) as to compute fib(25) and
fib(26) put together, and so the running time of the function increases rapidly,
more than doubling every time the argument increases by 2.°

The running time blows up really fast, and it’s all caused by our repeated
computation of things that we already computed. Recursive functions occasion-
ally have this problem, but there’s an easy solution for it, which we'll see in

Chapter 3.

1.8.2" Partitioning

Fibonacci numbers are rather abstruse, and it’s hard to find simple realistic
examples of programs that need to compute them.

Here’s a somewhat more realistic example. We have some valuable items,
which we'll call “treasures,” and we want to divide them evenly between two
people. We know the value of each item, and we would like to ensure that both
people get collections of items whose total value is the same. Or, to recast the
problem in a more mundane light: we know the weight of each of the various
groceries you bought today, and since you're going to carry them home with one
bag in each hand, you want to distribute the weight evenly.

To convince yourself that this can be a tricky problem, try dividing up a set
of ten items that have these dollar values:

$9, $12, $14, $17, $23, $32, $34, $40, $42, and $49

One of the technical reviewers objected that this was an exaggeration, and it is. But I estimate that
calculating fib(100) by this method would take about 2,241,937 billion billion years, which is
close enough.

In fact, each increase of 2 in the argument increases the running time by a factor of about 2.62.
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CODE LIBRARY

find-share

Since the total value of the items is $272, each person will have to receive items

totalling $136. Then try:
$9, $12, $14, $17, $23, $32, $34, $40, $38, and $49

Here I replaced the $42 item with a $38 item, so each person will have to receive
items totalling $134.

This problem is called the partition problem. We'll generalize the problem a
lictle: instead of trying to divide a list of treasures into two equal parts, we'll try
to find some share of the treasures whose total value is a given target amount.
Finding an even division of the treasures is the same as finding a share whose
value is half of the total value of all the treasures; then the other share is the rest
of the treasures, whose total value is the same.

If there is no share of treasures that totals the target amount, our function
will return undef:

sub find_share {
my ($target, $treasures) = @_;
return [] if $target == 0;

return if $target < 0 || @$treasures == 0;

We take care of some trivial cases first. If the target amount is exactly zero, then
it’s easy to produce a list of treasures that total the target amount: the empty list
is sure to have value zero, so we return that right away.

If the target amount is less than zero, we can't possibly hit it, because treasures
are assumed to have positive value. In this case no solution can be found and the
function can immediately return failure. If there are no treasures, we know we
can’t make the target, since we already know the target is larger than zero; we fail
immediately.

Otherwise, the target amount is positive, and we will have to do some real
work:

my ($first, @rest) = @$treasures;
my $solution = find_share($target-$first, \@rest);
return [$first, @$solution] if $solution;

return find_share($target , \@rest);

Here we copy the list of treasures, and then remove the first treasure from the list.
This is because we're going to consider the simpler problem of how to divide up
the treasures without the first treasure. There are two possible divisions: either
this first treasure is in the share we're computing, or it isnt. If it is, then we
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have to find a subset of the rest of the treasures whose total value is $target -
$first. If it isn’t, then we have to find a subset of the rest of the treasures whose
total value is $target. The rest of the code makes recursive calls to find_share
to investigate these two cases. If the first one works out, the function returns a
solution that includes the first treasure; if the second one works out, it returns a
solution that omits the first treasure; if neither works out, it returns undef.
Here’s a trace of a sample run. We'll call find_share(5, [1, 2, 4, 8D):

Total Remaining
Share so far so far Target treasures
0 5 1248

None of the trivial cases apply — the target is neither negative nor zero, and the
remaining treasure list is not empty — so the function tries allocating the first
item, 1, to the share; it then looks for some set of the remaining items that can

be made to add up to 4:
1 1 4 248

The function will continue investigating this situation until it is forced to give up.

The function then allocates the first remaining item, 2, toward the share of
4, and makes a recursive call to find some set of the last 2 elements that add
up to 2:

12 3 2 48

Let’s call this “situation .” The function will continue investigating this situation
until it concludes that situation  is hopeless. It tries allocating the 4 to the share,
but that overshoots the target total:

124 7 -2 8

so it backs up and tries continuing from situation @ without allocating the 4 to
the share:

12 3 2 8

The share is still wanting, so the function allocates the next item, 8, to the
share, which obviously overshoots:

128 11 —6

Here we have $target < 0, so the function fails, and tries omitting 8 instead.
This doesn’t work either, as it leaves the share short by 2 of the target, with no
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CODE LIBRARY

partition

items left to allocate:

Total Remaining
Share so far so far Target treasures
12 3 2

This is the if (@$treasures == 0) { return undef } case.

The function has tried every possible way of making situation @ work; they
all failed. It concludes that allocating both 1 and 2 to the share doesnt work, and
backs up and tries omitting 2 instead:

1 1 4 48
It now tries allocating 4 to the share:

14 5 0 8

Now the function has $target == 0, so it returns success. The allocated treasures
are 1 and 4, which add up to the target 5.

The idea of ignoring the first treasure and looking for a solution among the
remaining treasures, thus reducing the problem to a simpler case, is natural. A
solution without recursion would probably end up duplicating the underlying
machinery of the recursive solution, and simulating the behavior of the function-
call stack manually.

Now solving the partition problem is easy; it’s a call to find_share(), which
finds the first share, and then some extra work to compute the elements of the
original array that are not included in the first share:

sub partition {
my $total = O;
my $share_2;
for my $treasure (@) {
$total += $treasure;

my $share_1 = find_share($total/2, [@_]);
return unless defined $share_1;

First the function computes the total value of all the treasures. Then it asks
find_share() to compute a subset of the original treasures whose total value
is exactly half. If find_share() returns an undefined value, there was no equal
division, so partition() returns failure immediately. Otherwise, it will set about
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computing the list of treasures that are 7ot in $share_1, and this will be the
second share:

my %in_share_1;
for my $treasure (@$share_1) {

++$in_share_1{$treasure};

for my $treasure (@) {
if ($in_share_1{$treasure}) {
--$in_share_1{$treasure};
} else {

push @$share_2, $treasure;

The function uses a hash to count up the number of occurrences of each value
in the first share, and then looks at the original list of treasures one at a time. If
it saw that a treasure was in the first share, it checks it off; otherwise, it put the
treasure into the list of treasures that make up share 2.

return ($share_1, $share_2);

When it’s done, it returns the two lists of treasures.

There’s a lot of code here, but it mostly has to do with splitting up a list of
numbers. The key line is the call to find_share(), which actually computes the
solution; this is $share_1. The rest of the code is all about producing a list of
treasures that aren’t in $share_1; this is $share_2.

The find_share function, however, has a problem: it takes much too long
to run, especially if there is no solution. It has essentially the same problem as
fib did: it repeats the same work over and over. For example, suppose it is trying
to find a division of 1 2 3 4 5 6 7 with target sum 14. It might be investigating
shares that contain 1 and 3, and then look to see if it can make 5 6 7 hit the
target sum of 10. It can’t, so it will look for other solutions. Later on, it might
investigate shares that contain 4, and again look to see if it can make 5 6 7 hit
the target sum of 10. This is a waste of time; find_share should remember that
5 6 7 cannot hit a target sum of 10 from the first time it investigated that.

We will see in Chapter 3 how to fix this.

39






CHAPTER

DISPATCH TABLES

In Chapter 1, we saw how to make functions more flexible by parametrizing
their behaviors in terms of other functions. For example, instead of hardwiring
the hanoi () function to print a certain message every time it wanted to move
a disk, we had it call a secondary function that was passed in from outside.
By supplying an appropriate secondary function, we could make hanoi () print
out a list of instructions, or check its own moves, or generate a graphic display,
without recoding the basic algorithm. Similarly, we were able to abstract the
directory-walking behavior away from the file-size-computing behavior of our
total_size() function to get a more useful and generally applicable dir_walk()
function that could be used to do all sorts of different things.

To abstract behavior out of hanoi () and dir_walk(), we made use of code
references. We passed hanoi () and dir_walk() additional functions as arguments,
effectively treating the secondary functions as pieces of data. Code references
make this possible.

Now we'll leave recursion for a while and go off in a different direction that
shows another use of code references.

2.1 CONFIGURATION FILE HANDLING

Let’s suppose that we have an application that reads in a configuration file in the
following format:

VERBOSITY 8
CHDIR /usr/local/app

41



42 CHAPTER 2 Dispatch Tables

LOGFILE Tog

We would like to read in this configuration file and take an appropriate action
for each directive. For example, for the VERBOSITY directive, we just want to set
a global variable. But for the LOGFILE directive, we want to immediately redirect
the program’s diagnostic messages to the specified file. For CHDIR we might like
the program to chdir to the specified directory so that subsequent file operations
are relative to the new directory. This means that in the preceding example the
LOGFILE is /usr/Tocal/app/log, and not the log file in whatever directory the
user happened to be in at the time the program was run.

Many programmers would see this problem and immediately envision
a function with a giant if-else switch in it, perhaps something like
this:

sub read_config {
my ($filename) = @_;
open my($CF), $filename or return; # Failure
while (<$CF>) {
chomp;
my ($directive, $rest) = split /\s+/, $_, 2;
if ($directive eq 'CHDIR') {
chdir($rest) or die "Couldn’t chdir to '$rest': $!; aborting";
} elsif ($directive eq 'LOGFILE') {
open STDERR, ">>", S$rest
or die "Couldn’t open log file 'S$rest': $!; aborting";
} elsif ($directive eq 'VERBOSITY') {
$VERBOSITY = $rest;
} elsif ($directive eq ...) {

} .
} else {
die "Unrecognized directive $directive on 1line $. of $filename; aborting";
}
3

return 1; # Success
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This function is in two parts. The first part opens the file and reads lines from it
one at a time. It separates each line into a $directive part (the first word) and
a $rest part (the rest). The $rest part contains the arguments to the directive,
such as the name of the log file to open when supplied with the LOGFILE directive.
The second part of the function is a big i f-else tree that checks the $directive
variable to see which directive it is, and aborts the program if the directive is
unrecognized.

This sort of function can get very large, because of the many alternatives in
the 1f-else tree. Each time someone wants to add another directive, they change
the function by adding another e1s1f clause. The contents of the branches of the
if-else tree don’t have much to do with each other, except for the inessential
fact that they’re all configurable. Such a function violates an important law of
programming;: Related things should be kept together; unrelated things should
be separated.

Following this law suggests a different structure for this function: The part
that reads and parses the file should be separate from the actions that are per-
formed when the configuration directives are recognized. Moreover, the code for
implementing the various unrelated directives should not be lumped together
into a single function.

2.1.1 Table-Driven Configuration

We can do better by separating the code for opening, reading, and parsing
the configuration file from the unrelated segments that implement the various
directives. Dividing the program into two halves like this will give us bet-
ter flexibility to modify each of the halves, and to separate the code for the
directives.

Here’s a replacement for read_config():

sub read_config {
my ($filename, $actions) = @_;
open my($CF), $filename or return; # Failure
while (<$CF>) {
chomp;
my ($directive, $rest) = split /\s+/, $_, 2;
if (exists $actions->{$directive}) {
$actions->{$directive}->($rest);
} else {

CODE LIBRARY

rdconfig-tabular
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}

die "Unrecognized directive $directive on line $. of $filename; aborting";

return 1; # Success

We open, read, and parse the configuration file exactly as before. But we dispense
with the giant if-else switch. Instead, this version of read_config receives an
extra argument, $actions, which is a table of actions; each time read_config()
reads a configuration directive, it will perform one of these actions. This table is
called a dispatch table, because it contains the functions to which read_config()
will dispatch control as it reads the file. The $rest variable has the same meaning
as before, but now it is passed to the appropriate action function as an argument.
A typical dispatch table might look like this:

$dispatch_table =

{ CHDIR => \&change_dir,
LOGFILE => \&open_log_file,
VERBOSITY => \&set_verbosity,

};

= ...,

The dispatch table is a hash, whose keys (generically called zags) are directive
names, and whose values are actions, references to subroutines that are invoked
when the appropriate directive name is recognized. Action functions expect to
receive the $rest variable as an argument; typical actions look like these:

sub change_dir {
my ($dir) = @_;
chdir($dir)

or die "Couldn’t chdir to '$dir': $!; aborting";

sub open_Tlog_file {
open STDERR, ">>", $_[0]

or die "Couldn’t open log file '$_[0]': $!; aborting";

sub set_verbosity {
$VERBOSITY = shift
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If the actions are small, we can put them directly into the dispatch table:

$dispatch_table =
{ CHDIR => sub { my ($dir) = @_;
chdir($dir) or
die "Couldn’t chdir to '$dir': $!; aborting";

}7
LOGFILE => sub { open STDERR, ">>", $_[0] or
die "Couldn’t open Tog file '"$_[0]': $!; aborting";
},

VERBOSITY => sub { $VERBOSITY = shift },
= ...,

};

By switching to a dispatch table, we've eliminated the huge if-else tree, but in
return we've gotten a table that is only a little smaller. That might not seem like
a big win. But the table provides several benefits.

2.1.2° Advantages of Dispatch Tables

The dispatch table is data, instead of code, so it can be modified at run time.
You can insert new directives into the table whenever you want to. Suppose the

table has:
'DEFINE' => \&define_config_directive,

where define_config_directive() is:

sub define_config_directive { CODE LIBRARY

my $rest = shift; def-conf-dir
$rest =~ s/"\s+//;
my ($new_directive, $def_txt) = split /\s+/, $rest, 2;

if (exists $CONFIG_DIRECTIVE_TABLE{$new_directive}) {

warn "$new_directive already defined; skipping.\n";

return;

my $def = eval "sub { $def_txt }";
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if (not defined $def) {
warn "Could not compile definition for '$new_directive': $@; skipping.\n";

return;

$CONFIG_DIRECTIVE_TABLE{$new_directive} = $def;

The configurator now accepts directives like this:
DEFINE HOME chdir('/usr/local/app');

define_config_directive() puts HOME into $new_directive and
chdir('/usr/local/app'); into $def_txt. It uses eval to compile the defini-
tion text into a subroutine, and installs the new subroutine into a master
configuration table, %CONFIG_DIRECTIVE_TABLE, using HOME as the key. If
%CONFIG_DIRECTIVE_TABLE were in fact the dispatch table that was passed to
read_config() in the first place, then read_config() will see the new definition,
and will have an action associated with HOME if it sees the HOME directive on a
later line of the input file. Now a config file can say:

DEFINE HOME chdir('/usr/local/app');
CHDIR /some/directory

HOME
The directives in ... are invoked in the directory /some/directory. When the

processor reaches HOME, it returns to its home directory. We can also define a more
robust version of the same thing:

DEFINE PUSHDIR use Cwd; push @dirs, cwd(); chdir($_[0])
DEFINE POPDIR chdir(pop @dirs)

PUSHDIR dir uses the cwd() function provided by the standard cwd module to
figure out the name of the current directory. It saves the name of the current
directory in the variable @dirs, and then changes to ir. POPDIR undoes the effect
of the last PUSHDIR:

PUSHDIR /tmp
A
PUSHDIR /usr/local/app
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B
POPDIR
C
POPDIR

The program changes to /tmp, then executes directive A. Then it changes to
/usr/Tocal/app and executes directive B. The following POPDIR returns the pro-
gram to /tmp, where it executes directive C; finally the second POPDIR returns it
to wherever it started out.

In order for DEFINE to modify the configuration table, we had to store it
in a global variable. It’s probably better if we pass the table to define_config_
directive explicitly. To do that we need to make a small change to read_config:

sub read_config { CODE LIBRARY

my ($filename, $actions) = @_; rdconfig-tablearg
open my($CF), $filename or return; # Failure
while (<$CF>) {

chomp;

my ($directive, $rest) = split /\s+/, $_, 2;

if (exists $actions->{$directive}) {

$actions->{$directive}->($rest, $actions);
} else {

die "Unrecognized directive $directive on Tine $. of $filename; aborting";

}

return 1; # Success

Now define_config_directive can look like this:

sub define_config_directive { CODE LIBRARY

my ($rest, $dispatch_table) = @_; def-cdir-tablearg
$rest =~ s/"\s+//;
my ($new_directive, $def_txt) = split /\s+/, $rest, 2;

if (exists $dispatch_table->{$new_directive}) {

warn "$new_directive already defined; skipping.\n";
return;

my $def = eval "sub { $def_txt }";
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if (not defined $def) {
warn "Could not compile definition for '$new_directive': $@; skipping.\n";
return;

$dispatch_table->{$new_directive} = $def;

With this change, we can add a really useful configuration directive:
DEFINE INCLUDE read_config(@.);

This installs a new entry into the dispatch table that looks like this:
INCLUDE => sub { read_config(@.) }

Now, when we write this in the configuration file:
INCLUDE extra.conf

the main read_config() will invoke the action, passing it two arguments. The
first argument will be the $rest from the configuration file; in this case the
filename extra.conf. The second argument to the action will be the dispatch
table again. These two arguments will be passed directly to a recursive call of
read_config. read_config will read extra.conf, and when it’s finished it will
return control to the main invocation of read_config, which will continue with
the main configuration file, picking up where it left off.

In order for the recursive call to work properly, read_config() must be
reentrant. The easiest way to break reentrancy is to use a global variable, for
example by using a global filehandle instead of the lexical filehandle we did use.
If we had used a global filehandle, the recursive call to read_config() would open
extra.conf with the same filehandle that was being used by the main invocation;
this would close the main configuration file. When the recursive call returned,
read_config() would be unable to read the rest of the main file, because its
filehandle would have been closed.

The INCLUDE definition was very simple and very useful. But it was also inge-
nious, and it might not have occurred to us when we were writing read_config.
It would have been easy to say “Oh, read_config doesn’t need to be reentrant.”
But if we had written read_config in a nonreentrant way, the useful INCLUDE def-
inition wouldn’t have worked. There’s an important lesson to learn here: make
functions reentrant by default, because sometimes the usefulness of being able
to call a function recursively will be a surprise.
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Reentrant functions exhibit a simpler and more predictable behavior than
nonreentrant functions. They are more flexible because they can be called recur-
sively. Our INCLUDE example shows that we might not always anticipate all the
reasons why someone might want to invoke a function recursively. It’s better and
safer to make everything reentrant if possible.

Another advantage of the dispatch table over hardwired code in
read_config() is that we can use the same read_config function to process
two unrelated files that have totally different directives, just by passing a differ-
ent dispatch table to read_config() each time. We can put the program into
“beginner mode” by passing a stripped-down dispatch table to read_configQ.
Or we can re-use read_config() to process a different file with the same basic
syntax by passing it a table with a different set of directives; an example of this
appears in Section 2.1.4.

2.1.3 Dispatch Table Strategies

In our implementation of PUSHDIR and POPDIR, the action functions used a global
variable, @dirs, to maintain the stack of pushed directories. This is unfortu-
nate. We can get around this, and make the system more flexible, by having
read_config() support a user parameter. This is an argument, supplied by the
caller of read_config(), which is passed verbatim to the actions:

sub read_config {

my ($filename, $actions, $user_param) = @_;

open my($CF), $filename or return; # Failure

while (<$CF>) {
my ($directive, $rest) = split /\s+/, $_, 2;
if (exists $actions->{$directive}) {

$actions->{$directive}->($rest, $user_param, $actions);

} else {

CODE LIBRARY

rdconfig-uparam

die "Unrecognized directive $directive on Tine $. of $filename; aborting";

}

return 1; # Success
This eliminates the global variable, because we can now define PUSHDIR and
POPDIR like this:

DEFINE PUSHDIR wuse Cwd; push @{$_[1]}, cwd(); chdir($_[0])
DEFINE POPDIR chdir(pop @{$_[1]1)
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The $_[1] parameter refers to the user-parameter argument that is passed to
read_config(). If read_config() is called with:

read_config($filename, $dispatch_table, \@dirs);
then PUSHDIR and POPDIR will use the array @dirs as their stack; if it is called with:
read_config($filename, $dispatch_table, []);

then they will use a fresh, anonymous array as the stack.
It’s often useful to pass an action callback the name of the tag on whose
behalf it was invoked. To do this, we change read_config() like this:

sub read_config {
my ($filename, $actions, $user_param) = @_;
open my($CF), $filename or return; # Failure
while (<$CF>) {
my ($directive, $rest) = split /\s+/, $_, 2;
if (exists $actions->{$directive}) {
$actions->{$directive}->($directive, $rest, $actions, $user_param);
} else {
die "Unrecognized directive $directive on Tine $. of $filename; aborting";

3

return 1; # Success

Why is this useful? Consider the action we defined for the VERBOSITY
directive:

VERBOSITY => sub { $VERBOSITY = shift },

It’s easy to imagine that there might be several configuration directives that all
follow this general pattern:

VERBOSITY => sub { $VERBOSITY = shift },
TABLESIZE => sub { $TABLESIZE = shift },
PERLPATH => sub { $PERLPATH = shift },

. etc ...

We would like to merge the three similar actions into a single function that does
the work of all three. To do that, the function needs to know the name of the
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directive so that it can set the appropriate global variable:

VERBOSITY => \&set_var,

TABLESIZE => \&set_var,

PERLPATH => \&set_var,
. etc ...

sub set_var {
my ($var, $val) = @_;
$$var = $val;

Oy, if you don’t like a bunch of global variables running around loose, you can
store configuration information in a hash, and pass a reference to the hash as the
user parameter:

sub set_var {
my ($var, $val, undef, $config_hash) = @_;
$config_hash->{$var} = $val;

In this example, not much is saved, because the action is so simple. But there
might be several configuration directives that need to share a more complicated
function. Here’s a slightly more complicated example:

sub open_input_file {
my ($handle, $filename) = @_;
unless (open $handle, $filename) {
warn "Couldn’t open $handle file '$filename': $!; dignoring.\n";

Thisopen_input_file() function can be shared by many configuration directives.
For example, suppose a program has three sources of input: a history file, a
template file, and a pattern file. We would like the locations of all three files to be
configurable in the configuration file; this requires three entries in the dispatch
table. But the three entries can all share the same open_input_file() function:

HISTORY => \&open_input_file,
TEMPLATE => \&open_input_file,
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PATTERN => \&open_input_file,

Now suppose the configuration file says:

HISTORY /usr/local/app/history
TEMPLATE /usr/local/app/templates/main.tmpl
PATTERN /home/bi11/app/patterns/default.pat

read_config() will see the first line and dispatch to the open_input_file(
function, passing it the argument list ("HISTORY', '/usr/local/app/history"').
open_input_file() will take the HISTORY argument as a filehandle name, and
open the HISTORY filehandle to come from the /usr/local/app/history file. On
the second line, read_config() will dispatch to the open_input_file() again, this
time passing it ('TEMPLATE', '/usr/local/app/templates/main.tmp1'). This
time, open_input_file() will open the TEMPLATE filehandle instead of the HISTORY
filehandle.

2.1.4 Default Actions

Our example read_config() function dies when it encounters an unrecognized
directive. This behavior is hardwired in. It would be better if the dispatch table
itself carried around the information about what to do for an unrecognized
directive. It’s easy to add this feature:

sub read_config {
my ($filename, $actions, $userparam) = @_;
open my($CF), $filename or return; # Failure
while (<$CF>) {
chomp;
my ($directive, $rest) = split /\s+/, $_, 2;
my $action = $actions->{$directive} || $actions->{_DEFAULT_};
if ($action) {
$action->($directive, $rest, $actions, $userparam);
} else {
die "Unrecognized directive $directive on 1line $. of $filename; aborting";

3

return 1; # Success
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Here the function looks in the action table for the specified directive; if it isnt
there, if looks for a _DEFAULT_ action, and dies only if there is no default specified
in the dispatch table. Here’s a typical _DEFAULT_ action:

sub no_such_directive {
my ($directive) = @_;

warn "Unrecognized directive $directive at Tine $.; ignoring.\n";

Since the directive name is passed as the first argument to the action function, the
default action knows what unrecognized directive it was called on behalf of. Since
the no_such_directive() function also gets passed the entire dispatch table, it
can extract the real directive names and do some pattern matching to figure out
what might have been meant. Here no_such_directive() uses a hypothetical
score_match() function to decide which table entries are good matches for the
unrecognized directive:

sub no_such_directive {
my ($bad, $rest, $table) = @_;
my ($best_match, $best_score);
for my $good (keys %$table) {
my $score = score_match($bad, $good);
if ($score > $best_score) {
$best_score = $score;

$best_match = $good;

}
warn "Unrecognized directive $bhad at line $.;\n";

warn "\t(perhaps you meant $best_match?)\n";

The system we have now has only a little code, but it’s extremely flexible. Suppose
our program is also going to read a list of user IDs and email addresses in the
following format:

fred fred@example.com
bill bvoehno@plover.com

warez warez-admin@plover.com
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We can re-use read_config() and have it read and parse this file, by supplying
the appropriate dispatch table:

$address_actions =
{ _DEFAULT_ => sub { my ($id, $addr, $act, S$aref) = @_;
push @$aref, [$id, $addr];
1,
1

read_config($ADDRESS_FILE, $address_actions, \@address_array);

Here we've given read_config() a very small dispatch table; all it has is a
_DEFAULT_entry. read_config() will call this defaultentry once for each line in the
address file, passing it the “directive name” (which is actually the user ID) and the
address (which is the $rest value). The default action will take this information
and add it to @address_array, which can be used later by the program.

2.2 CALCULATOR

Let’s get away from the configuration file example for a while. Obviously, dis-
patch tables are going to make sense in many similar situations. For example, a
conversational program that must process commands from a user can use a dis-
patch table to dispatch the user’s commands. We'll look at a different example, a
very simple calculator.

The input to this calculator is a string that contains an arithmetic expression
in reverse Polish notation (RPN). Conventional arithmetic notation is ambiguous.
If you write 2+ 3 - 4, it’s not immediately clear whether we do the addition or the
multiplication first. We have to have special conventions to say that multiplication
always happens before addition, or we have to disambiguate the expression by
inserting parentheses, for example, (2 4 3) - 4.

Reverse Polish notation solves the problem in a different way. Instead of
putting the operator symbols in between the arguments that they operate on,
RPN puts the operators after their arguments. For example, instead of 2 + 3 we
write 2 3 +. Instead of (2 4+ 3) - 4, we write 2 3 + 4 *. The + follows 2 and 3, so
the 2 and 3 are added; the * says to multiply the two preceding expressions, which
are 2 3 +and 4. To express 2 4 (3 - 4) in RPN, we would write 2 3 4 * +. The
+ applies to the two preceding arguments; the first of these is 2 and the second
is 3 4 *. Because the operator always follows its arguments, such expressions are
said to be in postfix form; this is to contrast them with the usual form, where the
operators are in between their arguments, which is called infix form.
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It’s easy to compute the value of an expression in RPN. To do this, we
maintain a stack, and read the expression from left to right. When we see a
number, we push it on the stack. When we see an operator, we pop the top two
elements off the stack, operate on them, and push the result back on the stack.
For example, to evaluate 2 3 + 4 *, we first push 2 and then 3, and then when
we see the + we pop them off and push back the sum, 5. Then we push 4 on top
of the 5, and then the * tells us to pop the 4 and the 5 and push back the final
answer, 20. To evaluate 2 3 4 * + we push 2, then 3, then 4. The * tells us to
pop back the 3 and the 4 and push the product 12; the + tells us to pop the 12
and the 2 and push the sum, 14, which is the final answer.

Here’s a small calculator program that evaluates the RPN expression supplied
in its command-line argument:

my $result = evaluate($ARGV[0]);

print "Result: $result\n"; rpn-ifelse

sub evaluate {
my @stack;
my ($expr)
my @tokens = split /\s+/, $expr;
for my $token (@tokens) {
if ($token =~ /"\d+$/) { # It's a number
push @stack, $token;
} elsif ($token eq '+') {
push @stack, pop(@stack) + pop(@stack);
} elsif ($token eq '-') {
my $s = pop(@stack);
push @stack, pop(@stack) - $s
} elsif ($token eq '*') {
push @stack, pop(@stack) * pop(@stack);
} elsif ($token eq '/') {
my $s = pop(@stack);
push @stack, pop(@stack) / $s
} else {
die "Unrecognized token '$token'; aborting";
}
}
return pop(@stack);

@_:

The function splits the argument on whitespace into zokens, which are the smallest
meaningful portions of the input. Then the function loops over the tokens one
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at a time, from left to right. If a token matches /"\d+$/, then it is a number, so
the function pushes it onto the stack. Otherwise, it’s an operator, so the function
pops two values off the stack, operates on them, and pushes the result back onto
the stack. The auxiliary $s variable in the code for subtraction is there because
5 3 - should yield 2, not —2. If we had used:

push @stack, pop(@stack) - pop(@stack);

then for 5 3 - the first pop would pop the 3, the second would pop the 5, and the
result would have been —2. There is similar code in the division branch for the
same reason. For multiplication and addition, the order of the operands doesnt
matter.

When the function runs out of tokens, it pops the top value off the stack;
this is the final result. This code ignores the possibility that the stack might finish
with several values; this would mean that the argument contained more than
one expression. 10 2 * 3 4 + leaves 20 and 7 on the stack, in that order. It also
ignores the possibility that the stack might become empty. For example, 2 * and
2 3 + * are invalid expressions, because in each, the * has only one argument
instead of two. In evaluating these, the function finds itself doing an operation
when the stack is empty. It should signal an error in that case, but I omitted the
error handling to keep the example small.

We can make the example simpler and more flexible by replacing the large
if-else switch with a dispatch table:

my @stack;

my $actions = {

+' => sub { push @stack, pop(@stack) + pop(@stack) 1},

'*' => sub { push @stack, pop(@stack) * pop(@stack) 1},

-' => sub { my $s = pop(@stack); push @stack, pop(@stack) - $s },
'/'" => sub { my $s = pop(@stack); push @stack, pop(@stack) / $s },
'NUMBER' => sub { push @stack, $_[0] },

'_DEFAULT_" => sub { die "Unrecognized token '$_[0]'; aborting" }

1

my $result = evaluate($ARGV[0], $actions);
print "Result: $result\n";

sub evaluate {
my ($expr, $actions) = @_;
my @tokens = split /\s+/, $expr;
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for my $token (@tokens) {
my $type;
if ($token =~ /"\d+$/) { # It’s a number
$type = 'NUMBER';

my $action = $actions->{$type}
|| $actions->{$token}
|| $actions->{_DEFAULT_};
$action->($token, $type, $actions);
}
return pop(@stack);

The main driver, evaluate(), is now much smaller and more general. It selects
an action based on the token’s “type,” if it has one; otherwise, the action is based
on the value of the token itself, and if there is no such action, a default action
is used. The evaluate() function does a pattern match on the token to try to
determine a token type, and if the token looks like a number, the selected type is

NUMBER. We can add a new operator by adding an entry to the %actions dispatch
table:

'sqrt' => sub { push @stack, sqrt(pop(@stack)) },

Again, because of the dispatch table construction, we can get a different behavior
from the evaluator by supplying a different dispatch table. Instead of reducing
the expression to a number, the evaluator will compile it into an abstract syntax

tree (AST) if we supply this dispatch table:

my $actions = {
'NUMBER' => sub { push @stack, $_[0] 1},
'_DEFAULT_"' => sub { my $s = pop(@stack);
push @stack,
[ $_[0], pop(@stack), $s ]
1,
b

The result of compiling 2 3 + 4 * is the abstract syntax tree [ '*', [ '+', 2,
3 1, 4 1, which we can also represent as in Figure 2.1.
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FIGURE 2.I The AST for the expression 2 3 + 4 *.

This is the most useful internal form for an expression because all the structure
is represented directly. An expression is either a number, or it has an operator
and two operands; the two operands are also expressions. An abstract syntax tree
is either a number, or a list of an operator and two other ASTs. Once we have an
AST, it’s easy to write a function to process it. For example, here is a function to
convert an AST to a string:

sub AST_to_string {
my ($tree) = @_;
if (ref $tree) {
my ($op, $al, $a2) = @$tree;
my ($s1, $s2) = (AST_to_string($al),
AST_to_string($a2));
"($s1 $op $s2)";
} else {
$tree;

Given the tree of Figure 2.1, the AST_to_string() function produces the string
"((2 + 3) * 4)". The function first checks to see if the tree is trivial; if it is not
a reference, then it must be a number, and the string version is just that number.
Otherwise, the string has three parts: an operator symbol, which is stored in
$op, and two arguments, which are ASTs. The function calls itself recursively to
convert the two argument trees to strings $s1 and $s2, and then produces a new
string that has $s1 and $s2 with the appropriate operator symbol in between,
surrounded by parentheses to avoid ambiguity. We have just written a system to
convert postfix expressions to infix expressions, because we can feed the original
postfix expression to evaluate() to generate an AST, and then give the AST to
AST_to_string() to generate an infix expression.

The AST_to_string() function is recursive because the definition of an AST
is recursive; the definition of an AST is recursive because the structure of an
expression is recursive. The structure of AST_to_string() directly reflects the
structure of an expression.
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2.2.1 HTML Processing Revisited

In Chapter 1 we saw walk_htm1(), a recursive HTML processor. The HTML
processor got two functional arguments: $textfunc, a function to call for a
section of untagged text, and $elementfunc, a function to call for an HTML
element. But “HTML element” is vague because there are many sorts of elements,
and we might want our function to do something different for each kind of
element.

We've seen several ways to accomplish this already. The most straightforward
is for the user to simply put a giant if-else switch into $elementfunc. As we've
already seen, that has some disadvantages. The user mightlike to supply adispatch
table to the $elementfunc instead. The structure of such a dispatch table is easy
to see: the keys of the table will be tag names, and the values will be actions
performed for each kind of element. Instead of supplying a single $elementfunc
that knows how to deal with every possible element, the user will supply a
dispatch table that provides one action for each kind of element, and also a
generic $elementfunc that dispatches the appropriate action.

The $elementfunc might get access to the dispatch table in any of several
ways. The dispatch table might be hardwired into the element function:

sub elementfunc {
my $table = { hl => sub { shift; my $text = join '', @_;
print $text; return $text ;
}
_DEFAULT_ => sub { shift; my $text = join '', @_;
return $text ;
b

my ($element) = @_;
my $tag = $element->{_tag};
my $action = $table->{$tag} || $table{_DEFAULT_};
return $action->(@.);

Alternatively, we could build dispatch table support directly into walk_htm10Q,
so that instead of passing a single $elementfunc, the user passes the dispatch table

directly to walk_htm1(). In that case, walk_htm1() would look something like
this:

sub walk_htm1 {
my ($html, $textfunc, $elementfunc_table) = @_;

return $textfunc->($html) unless ref $html; # It’s a plain string

CODE LIBRARY
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my ($item, @results);
for $item (@{$htm1->{_content}}) {
push @results, walk_htm1($item, $textfunc, $elementfunc_table);
}
my $tag = $html->{_tag};
my $elementfunc = $elementfunc_table->{$tag}
|| $elementfunc_table->{_DEFAULT_}
|| die "No function defined for tag '$tag'";

return $elementfunc->($html, @results);

Yet another option is to change walk_htm1() to pass a user parameter to the
$textfunc and $elementfunc. Then the user could have the dispatch table passed
to the $elementfunc via the user parameter mechanism:

sub walk_html {
my ($html, $textfunc, $elementfunc, $userparam) = @_;
return $textfunc->($html, $userparam) unless ref $html;
my ($item, @results);
for $item (@{$html->{_content}}) {
push @results, walk_html($item, $textfunc, $elementfunc, S$userparam);

}

return $elementfunc->($html, S$userparam, @results);

Now it is up to the users to design their $elementfuncs to process the dispatch
table appropriately.

One important and subtle point here: notice that we passed the user param-
eter to the $textfunc as well as to the $elementfunc. If the user parameter is a
tag dispatch table, it is probably not useful to the $textfunc. Why did we pass
it, then? Because it might not be a tag dispatch table; it might be something else.
For example, the user might have called walk_htm1 () like this:

walk_htm1($html_text,
# $textfunc
sub { my ($text, S$aref) = @_;

push @$aref, S$text },

# $elementfunc does nothing
sub { 1},
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# user parameter
\@text_array
);

Now walk_htm1() will walk the HTML tree and push all the untagged plain text
into the array @text_array. The user parameter is the reference to @text_array;
it is passed to the $textfunc, which pushes the text onto the referred-to array.
The $elementfunc doesn't use the user parameter at all. Since we, the authors of
walk_htm1Q), don’t know in advance which sort of user parameter the user will
require, we had better pass it to both the $textfunc and the $elementfunc; a
function that doesn’t need the user parameter is free to ignore it.






1

CHAPTER

CACHING AND
MEMOIZATION

We saw in Section 1.8 that a natural recursive function can sometimes perform
extremely badly. An easy and general solution to many of these performance
problems, as well as some that arise in nonrecursive contexts, is caching.

Let’s consider a program that converts images from one format to another.
Specifically, let’s imagine that the input is in the popular GIF format, and that
the output is something were going to send to the printer. The printer is not the
little machine that sits on your desk; it’s a big company with giant printing presses
that will print one million copies of some magazine by Thursday afternoon.

The printer wants the images in a special CMYK format. CMYK stands for
“Cyan-Magenta-Yellow-Black,” which are the four colors of the special printer’s
inks that the printer uses to print the magazines.! However, the colors in the
GIF image are specified as RGB values, which are the intensities of red, green,
and blue light that will be emitted by our computer monitor when it displays
the image. We need to convert the RGB values that are suitable for the monitor
into CMYK values that are appropriate for printing.

The conversion is just a matter of simple arithmetic:

sub RGB_to_CMYK {
my ($r, $g, $b) = @_;
my ($c, $m, $y) = (255-$r, 255-%g, 255-$b);
my $k = $c < $m ? ($c < $y ? $c : $y)
D (Bm < Sy ? $m : $y); # Minimum
for ($c, $m, $y) { $_ -= $k }

“K” is for “black”; the printers don’t use “B” because “B” is for “blue.”

CODE LIBRARY
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63



64 cHAPTER 3 Caching and Memoization

CODE LIBRARY

RGB-CMYK-caching

[$c, $m, Sy, $kI;
}

Now we write the rest of the program, which opens the GIF file, reads the pixels
one at a time, calls RGB_to_CMYK() for each pixel, and writes out the resulting
CMYK values in the appropriate format.

There’s a minor problem here. Let’s suppose that the GIF image is 1024
pixels wide and 768 pixels high, for a total of 786,432 pixels. We will have
made 786,432 calls to RGB_to_CMYK(). That seems all right, except for one
thing: Because of the way the GIF format is defined, no GIF image ever contains
more than 256 different colors. That means that at least 786,176 of our 786,432
calls were a waste of time, because we were doing the same computations that
we had already done before. If we could figure out how to save the results of our
RGB_to_CMYK() computations and recover them when appropriate, we might win
back some performance.

In Perl, whenever we consider the problem of checking whether we've seen
something already, the solution will almost always involve a hash. This is no
exception. If we can use the RGB value as a hash key, we can make a hash
that records whether we have seen a particular set of RGB values before, and if
so, what the corresponding CMYK value was. Then our program logic will go
something like this: To convert a set of RGB values to a set of CMYK values,
first look up the RGB values in the hash. If theyre not there, do the calculation
as before, store the result in the hash, and return it as usual. If the values are in
the hash, then just get the CMYK values from the hash and return them without
doing the calculation a second time.

The code will look something like this:
my %cache;

sub RGB_to_CMYK {
my ($r, $g, $b) = @_;
my $key = join ',', $r, $g, $b;
return $cache{$key} if exists $cache{$key};
my ($c, $m, $y) = (255-%r, 255-%g, 255-%b);
my $k = $c < $m ? ($c < $y ? $c : $y)
D (m < Sy ? $m : $y); # Minimum
for ($c, $m, $y) { $_ -= $k }
return $cache{$key} = [$c, $m, Sy, $k1;
}

Suppose we call RGB_to_CMYK() with arguments 128,0,64. The first time we
do this, the function will look in the %cache hash under the key '128,0,64";
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there won't be anything there, so it will continue through the function, per-
forming the calculation as usual, and, on the last line, store the result into
$cache{'128,0,64'}, and return the result. The second time we call the func-
tion with the same arguments, it computes the same key, and returns the value
of $cache{'128,0,64"'} without doing any extra calculation. When we find the
value we need in the cache without further calculation, that is called a cache hit;
when we compute the right key but find that no value is yet cached under that
key, it is called a cache miss.

Of course there’s a possibility that the extra program logic and the hash look-
ups will eat up the gains that we got from avoiding the computation. Whether
this is true depends on how time-consuming the original computation was
and on the likelihood of cache hits. When the original computation takes a
long time, caching is more likely to be a benefit. To be sure, we should run
a careful benchmark of both versions of the function. But to help develop
an intuition for the kinds of tradeoffs to expect, we will look briefly at the
theory.

Suppose the typical call to the real function takes time £ The average time
taken by the memoized version will depend on two additional parameters: K,
the cache management overhead, and 4, the probability of getting a cache hit on
any particular call. In the extreme case where we never get a cache hit, 4 is zero;
as the likelihood of cache hits increases, 4 approaches 1.

For a memoized function, the average time per call will be at least X, since
every call must check the cache, plus an additional fif there is a cache miss, for
a total of K + (1 — /)f. The unmemoized version of the function, of course,
always takes time f; so the difference is simply #f — K. If K < Af, the memoized
version of the function will be faster than the unmemoized version. To speed up
the memoized version, we can increase the cache hit rate 4, or decrease the cache
management overhead K. When fis large, it is easier to achieve K < Af, so
caching is more likely to be effective when the original function takes a long
time to run. In the worst case, we never get any cache hits, and » = 0, so the
“speedup” is actually a slowdown of —K.

3.1 CACHING FIXES RECURSION

We saw in Section 1.8 that recursive functions sometimes blow up and take much
too long, even on simple inputs, and that the Fibonacci function is an example

of this problem:

# Compute the number of pairs of rabbits alive in month n
sub fib {
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my ($month) = @_;
if ($month < 2) { 1}
else {
fib($month-1) + fib($month-2);

As we saw in Section 1.8, this function runs slowly for most arguments, because
it wastes time recomputing results it has already computed. For example, fib(20)
needs to compute fib(19) and fib(18), but fib(19) also computes fib(18), as
well as fib(17), which is also computed once by each of the calls to fib(18).
This is a common problem with recursive functions, and it is fixed by caching.
If we add caching to fib, then instead of recomputing fib(18) over again from
scratch the second time it is needed, fib will simply retrieve the cached result
of the first computation of fib(18). It won’t matter that we try to compute
fib(17) three times or fib(16) five times because the work will be done only
once, and the cached results will be retrieved quickly when they are needed
again.

3.2 INLINE CACHING

The most straightforward way to add caching to a function is to give the function
a private hash. In this example, we could use an array instead of a hash, since the
argument to fib() is always a non-negative integer. But in general, we will need
to use a hash, so that’s what we’ll see here:

# Compute the number of pairs of rabbits alive in month n
fib-cached { my %cache;
sub fib {
my ($month) = @_;
unless (exists $cache{$month}) {
if ($month < 2) { $cache{$month} =1 }
else {

$cache{$month} = fib($month-1) + fib($month-2);

}

return $cache{$month};
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Here fib gets the same argument as before. But instead of going into the recursive
Fibonacci calculation immediately, it checks the cache first. The cache is a hash,
%cache. When the function computes a Fibonacci number fib($month), it will
store the value in $cache{$month}. Later calls to fib() will check to see if there is
avalue in the cache hash. This is the purpose of the exists $cache{$month} test.
If the cache element is absent, the function has never been called before for this
particular value of $month. The code inside the unless block is just the ordinary
Fibonacci computation, including recursive calls if necessary. However, once
the function has computed the answer, it doesn't return it immediately; instead,
it inserts the value into the cache hash in the appropriate place. For example,
$cache{$month} = 1 takes care of populating the cache when $month < 2 is true.

At the end of the function, return $cache{$month} returns the cached value,
whether the function just inserted it or it was there to begin with.

With these changes, the fib function is fast. The excessive recursion problem
we saw in Chapter 1 simply goes away. The problem was caused by the repeated
recomputation of results; adding caching behavior prevents any recomputation
from occurring. When the function tries to recompute a result it has computed
already, it immediately gets the value from the cache instead.

3.2.1 Static Variables

Why is %cache outside of fib instead of inside, and why is there a bare block
around %cache and fib?
If %cache were declared inside of fib, like this:

sub fib {
my %cache;

then the cache would not work, because a new, fresh %cache variable would be
created on every call to fib, and thrown away when fib returned. By declaring
%cache outside of any function, we tell Perl that we want only one instance of
%cache, created when the program is first compiled and destroyed only when the
program is finished. This allows %cache to accumulate values and retain them
in between calls to fib. A variable like %cache that has been declared outside
all the functions is called a static variable because its value stays the same unless
it is explicitly changed, and also because a similar feature of the C language is
activated with the keyword static.

%cache has been declared with my, so it is lexically scoped. By defaul, its
scope will continue to the end of the file. If we had defined any functions after
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fib, they would also be able to see and modify the cache. But this isn’t what we
want; we want the cache to be completely private to fib. Enclosing both %cache
and fib in a separate block accomplishes this. The scope of %cache extends only
to the end of the block, which contains only fib and nothing else.

3.3 GOOD IDEAS

There aren’t too many ideas that are both good and simple. The few that we
have are used everywhere. Caching is one of these. Your web browser caches the
documents it retrieves from the network. When you ask for the same document
a second time, the browser retrieves the cached copy from local disk or mem-
ory, which is fast, instead of downloading it again. Your domain name server
caches the responses that it receives from remote servers. When you look up
the same name a second time, the local server has the answer ready and doesn’t
have to carry on another possibly time-consuming network conversation. When
your operating system reads data from the disks, it probably caches the data in
memory, in case it’s read again; when your CPU fetches data from memory, it
caches the data in a special cache memory that is faster than the regular main
memory.

Caching comes up over and over in real programs. Almost any program
will contain functions where caching might yield a performance win. But the
best property of caching is that it’s mechanical. If you have a function, and you
would like to speed it up, you might rewrite the function, or introduce a better
data structure, or a more sophisticated algorithm. This might require ingenuity,
which is always in short supply. But adding caching is a no-brainer; the caching
transformation is always pretty much the same. This:

sub some_function {
$result = some computation involving @_;

return $result;

turns into this:

{ my %cache;
sub some_function_with_caching {
my $key = join ',', @_;
return $cache{$key} if exists $cache{$key};

$result = the same computation involving @_;
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return $cache{$key} = $result;

The transformation is almost exactly the same for every function. The only part
that needs to vary is the join ',', @_ line. This line is intended to turn the
function’s argument array into a string, suitable for a hash key. Turning arbitrary
values into strings like this is called serialization or marshalling” The preceding
join ',", @_ example works only for functions whose arguments are numbers
or strings that do not contain commas. We will look at the generation of cache

keys in greater detail later on.

3.4 MEMOIZATION

Adding the caching code to functions is not very much trouble. And as we saw,
the changes required are the same for almost any function. Why not, then, get the
computer to do it for us? We would like to tell Per] that we want caching behavior
enabled on a function. Perl should be able to perform the required transforma-
tion automatically. Such automatic transformation of a function to add caching
behavior is called memoization and the function is said to be memoized.?

The standard Memoize module, which I wrote, does this. If the Memoize
module is available, we do not need to rewrite the fib code at all. We simply add
two lines at the top of our program:

use Memoize;
memoize 'fib';
# Compute the number of pairs of rabbits alive in month n
sub fib {

my ($month) = @_;

if ($month < 2) {1}

else {

fib($month-1) + fib($month-2);

Data marshalling is so named because it was first studied in 1962 by Edward Waite Marshall, then
with the General Electric corporation.

The term memoization was coined in 1968 by Donald Michie.

CODE LIBRARY

fib-automemo
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CODE LIBRARY

memoize

fib now exhibits the caching behavior. The code is exactly the same as our original
slow version, but the function is no longer slow.

3.5 THE MEMOIZE MODULE

This book isn’t about the internals of Per] modules, but some of the techniques
used internally by Memoize are directly relevant to things we'll be doing later on,
so we'll have a short excursion now.

Memoi ze gets a function name (or reference) as its argument. It manufactures
a new function that maintains a cache and looks up its arguments in the cache. If
the new function finds the arguments in the cache, it returns the cached value; if
not, it calls the original function, saves the return value in the cache, and returns
it to the original caller.

Having manufactured this new function, Memoize then installs it into the
Perl symbol table in place of the original function so that when you think you're
calling the original function, you actually get the new cache manager function
instead.

Rather than looking into the innards of the real Memoize module, which is a
350-line monster, we'll see a tiny, stripped-down memoizer. The most important
thing we'll get rid of is the part of the code that deals with the Perl symbol table.
(We'll do this manually.) Instead, we’ll have a memoize function whose argument
is a reference to the subroutine we want to memoize, and which returns a reference
to the memoized version — that is, to the cache manager function:

sub memoize {

my ($func) = @_;

my %cache;

my $stub = sub {
my $key = join ',', @_;
$cache{$key} = $func->(@_) unless exists $cache{$key};
return $cache{S$key};

};

return $stub;

To call this, we first use:

$fastfib = memoize(\&fib);
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Now $fastfib is the memoized version of fib(). To install the memoized
version of fib() in the symbol table in place of the original, we would write
*fib = memoize (\&Fib). In this example, the installation is necessary if we want
to calculate Fibonacci numbers quickly. Just creating a memoized version of
fib(Q) isn't enough, because the recursive calls inside of fib() are calling the
function named fib(), and until we do the *fib assignment, this is still the old,
slow, unmemoized version.

How does memoize work? We pass it a reference to fib, and memoize sets up a
private %cache variable to hold cached data. Then it manufactures a stub function,
temporarily stored in $stub, which it returns to its caller. This stub function is
actually the memoized version of fib; the caller of memoize gets back a reference
to it, which we stored in $fastfib in the preceding example.

When we invoke $fastfib, we actually get the stub function that was pre-
viously manufactured by memoize. The stub function assembles a hash key by
joining the function arguments together with commas; then it looks in the
cache to see if the key is a familiar one. If so, the stub returns the cached value
immediately.

If the hash key isn't found in the hash, the stub function invokes the original
function via $func->(@_), gets the result, stores it in the cache, and returns it

(see Figure 3.1).

3.5.1 Scope and Duration

There are some subtleties here. First, suppose we call memoize (\&fib) and get
back $fastfib. Then we call $fastfib, which makes use of $func. A common
question is why $func didn’t go out of scope when memoize returned.

This question betrays a common misconception about scope. A variable has
two parts: a name and a value.* When you associate a name with a value, you
get a variable. Such an association is called a binding; we also say that the name
is bound to its value.

There are two things that might go wrong with our attempt to use $func
after memoize returns: The value might have been destroyed, or the binding
might have changed, so that the name refers to the wrong value, or to nothing
atall.

This is not precisely accurate. In imperative languages like Perl, a variable is an association between
a name and the part of the computer’s memory in which the value will be stored. For purposes of
our discussion, this distinction is unimportant.
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FIGURE 3.1 Calling a memoized function.

SCOPE

scope is the part of the program’s source code in which a certain binding is in
force. Inside the scope of a binding, the name and value are associated; outside
this scope, the binding is our of scope and the name and value are no longer
associated. The name might mean something else, or nothing at all.

When memoize is entered, the my $func declaration creates a new, fresh scalar
value and binds the name $func to it. The scope of the name declared with my,
such as $func, begins on the statement following the my declaration, and ends
at the end of the smallest enclosing block. In this case, the smallest enclosing
block is the one labeled sub memoize. Inside this block, $func refers to the lexical
variable just created; outside, it refers to something else, probably the unrelated
global variable $func. Since the stub that uses $func is inside this block, there’s no
scope problem; $func is in scope inside of the stub, and the name $func retains
its binding.

Outside the sub memoize block, $func means something different, but
the stub is inside the block, not outside. Scope is lexical, which means that
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it’s a property of the static program text, not a property of the order in
which things execute. The fact that the stub is called from outside the sub
memoize block is irrelevant; its code is “physically within” the scope of the $func
binding.

The situation is the same for %cache.

DURATION

Most people who ask whether $func is out of scope are worried about a differ-
ent problem, which is not a scope issue, but instead concerns something quite
different, called duration. The duration of a value is the period of time dur-
ing the program’s execution in which the value is valid for use. In Perl, when a
value’s duration is up, it is destroyed, and the garbage collector makes its memory
available for re-use.

The important thing to know about duration is that it is almost completely
unrelated to issues of names. In Perl, a value’s duration lasts until there are no
outstanding references to it. If the value is stored in a named variable, that counts
as a reference, but there are other kinds of references. For example:

my $x;
{
$x = 3;
my $r = \$x;

Here there is a scalar with the value 3. At the end of the block, there are two
references to it:

pad

The pad is the data structure that Perl uses internally to represent bindings
of my variables. (A different structure is used for global variables.) One reference
to the 3 is from the pad itself, because the name $x is bound to the value 3. The
other reference to the 3 is from the reference value that is bound to $r.
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When control leaves the block, $r goes out of scope, so the binding of $r to
its value is dissolved. Internally, Perl deletes the $r binding from the pad:

pad

] {2

Now there’s no reference to the reference value that used to be stored in
$r. Since nothing refers to it anymore, its duration is over and Perl] destroys it
immediately:

pad

This is typical: A variable’s name goes out of scope, and its value is destroyed
immediately after. Much of the confusion between scope and duration is probably
caused by the ubiquity of this simple example. But scope and duration are not
always so closely joined, as the next example will show:

my $r;

{
my $x = 3;
$r = \$x;

$r ——>
$x | —

When control leaves the block, the binding of $x is dissolved and $x is deleted
from the pad:
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Unlike in the previous example, the unbound value persists indefinitely
because it is still referred to by the reference bound to $r. Its duration will not
be over until this reference is gone.

This separation of scope and duration is an essential property of Perl variables.
For example, a common pattern in Perl object-oriented constructor functions is:

sub new {
my %self;

return \%self;

This constructor manufactures a hash, which is the object itself; then it returns
a reference to the hash. Even though the name %se1f has gone out of scope, the
object persists as long as the caller holds a reference to it. The analogous code
in C is erroneous, because in C, the duration of an auto variable ends with its
scope:

/* This 1is C */
struct st_object *new(...) {

struct st_object self;

return &self; /* expect a core dump */

Now let’s return to memoize. When memoize returns, $func does indeed go out
of scope. But the value is not destroyed, because there is still an outstanding
reference from the stub. To really understand what is going on, we need to take
a peek into Perl’s internals (see Figure 3.2).

The stub is represented by the double box at the top center of the diagram.
In Perl jargon, this box is called a CV/, for “code value”; it is the internal represen-
tation of a coderef. (The coderef bound to $func is visible on the right-hand side
of the diagram.) A CV is essentially a pair of pointers: one points to the code for
the subroutine, and the other points to the pad that was active at the moment
that the subroutine was defined. The binding of $func won't be destroyed until
the pad it’s in is destroyed. The pad won’t be destroyed because there is a reference
to it from the CV. The CV won't be destroyed because the caller stored it in the
caller’s pad by assigning it to $fastfib.

Perl knows that the stub might someday be invoked, and if it is, it might
examine the value of $func. As long as the stub exists, the value of $func must be
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caller's pad stub stub's pad

$fastﬁb| _|_>[ ° I o—]—» %cache | e4—

$func ———

Y

my $key = join ',', @

$cache{$key} = ﬂmc7>(’_) \&fib

unless exists $cache{$key}; I I fib's
return $cache{$key}; ? pad...

my ($month) = @_;
if ($month < 2) { 1 }
else |
fib($month-1)
+ fib($month-2);
}

FIGURE 3.2 The data structure manufactured by memo1ize.

preserved intact. There is a reference to the stub stored in $fastfib, and as long
as the reference is there, the stub must be preserved. Similarly, the cache %cache
persists as long as the stub does.

3.5.2 Lexical Closure

Now another point might be worrying you. Since the value of $func persists as
long as the stub does, what happens if we call memoize a second time, while the
first stub is still extant? Will the assignment to $func in the second call clobber
the value that the first stub was using?

The answer is no; everything works perfectly. This is because Perl’s anony-
mous functions have a property called /lexical closure. When an anonymous
function is created, Perl packages up its pad, including all the bindings that
are in scope, and attaches them to the CV. A function packaged up with an
environment in this way is called a closure.

When the stub is invoked, the original environment is temporarily reinstated,
and the stub function code is run in the environment that was in force at the
time the stub was defined. Lexical closure means that an anonymous function
carries its native environment wherever it goes, just like some tourists I have met.

The first time we call memoize, to memoize fib(), a new pad is set up for the
bindings of %cache and $func, new storage is allocated for these new variables,
and $func is initialized. Then the stub is created; the pad is attached to the CV
for the stub, and the CV (let’s call it fastfib()) is returned back to the caller.
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my $key = join ',', @_;
$cache{$key! = $func->(@_)

unless exists $cache{$key};
return $cache{$key};

stub function code

FIGURE 3.3 After two calls to memoize.

Now let’s call memoize a second time, this time to memoize quib() instead
of fib(Q (see Figure 3.3). Once again, a new pad is created and fresh %cache and
$func variables are bound into it. A CV is created (which well call fastquib())
that contains a pointer to the new pad. The new pad is completely unrelated to
the pad that was attached to fastfibQ).

When we invoke fastfib, fastfib’s pad is temporarily reinstated, and
fastfib’s code is executed. The code makes use of variables named %cache and
$func, and these are looked up in fastfib’s pad. Perhaps some data is stored into
%cache at this time. Eventually, fastfib returns, and the old pad comes back
into force.

Then we invoke fastquib, and almost the same thing happens. fastquib’s
pad is reinstated, with its own notion of %cache and $func. fastquib’s code is
run, and it too makes use of variables named %cache and $func. These are looked
up in fastquib’s pad, which has no connection to fastfib’s pad. Data stored
into fastfib’s %cache is completely inaccessible to fastquib.

Because the code part of the CV is read-only, it is shared between several CVs.
This saves memory. When a CV’s duration is over, its pad is garbage-collected.

Figure 3.4 shows a simpler example.

sub make_counter {
my $n = shift;

return sub { print "n is ", $n++ };

my $x = make_counter(7);

my $y = make_counter(20);

CODE LIBRARY

closure-example
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$x
Gl

$y
GI3—[ld—

\ \
| print "n is ", $n++|

FIGURE 3.4 After two calls to make_counter.

$x->0; $x->0; $x->0;
$y->0; $y—>0; $y—>0;
$x->Q0;

$x now contains a closure whose code is print "n is ", $n++ and whose
environment contains a variable $n, set to 7. If we invoke $x a few times:

$x->0; $x->0; $x->0;
the result is

n is 7

n is 8

nis 9

The new picture is shown in Figure 3.5.

$x
'I 0—l—>| $n| 0—|—>10

$y
GI3—Ll—=

\ \
| print "n is ", $n++|

FIGURE 3.5



3.3 THE MEMOIZE MODULE 79

$x
[o I o—]—»l $n| o—|—>1o

$y
GI3—[Td—~

Y

\
| print "n is ", $n++|

FIGURE 3.6

Now let’s run $y a few times:
$y->0; $y->0; $y—>0;

The same code runs, but this time the name $n is looked up in $y’s pad instead
of in $x’s pad:

n is 20
n is 21

n is 22

The new picture is shown inFigure 3.6.
Now let’s run $x again:

n is 10

The $n here is the same variable as it was the first three times we invoked $x, and
it has retained its value.

3.5.3 Memoization Again

All of the foregoing discussion was by way of explaining just why our memoize
function worked. While it’s tempting to dismiss this as a triviality — “Of course it
worked!” — it’s worth noticing that in many languages it won't work and can’t be
made to work. Several important and complex features had to operate together:
delayed garbage collection, bindings, generation of anonymous subroutines, and
lexical closure. If you tried to implement a function like memoize in C, for
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example, you would get stuck, because C doesn’t have any of those features. (See
Section 3.11.)

3.6 CAVEATS

(That’s Latin for “warnings.”)

Clearly, memoization is not a suitable solution for all performance problems.
It is not even applicable to all functions. There are several kinds of functions that
should not be memoized.

3.6.1 Functions Whose Return Values Do Not Depend on
Their Arguments

Memoization is most suitable for functions whose return values depend only on
their arguments. Imagine the foolishness of memoizing a time-of-day function:
The first time you called it, you would get the time of day; subsequent calls would
return the same time. Similarly, imagine the perversity of a memoized random
number generator.

Or imagine a function whose return value indicates a success or failure of
some sort. You do not want such a function to be memoized and return the same
value every time it is called.

However, memoization is suitable for some such functions. For example, it
might be useful to memoize a function whose result depends on the current hour
of the day, if the program will run for a long time. (See Section 3.7 for details
about how to handle this.)

3.6.2 Functions with Side Effects

Many functions are called not for their return values but for their side effects.
Suppose you have written a program that formats a computer uptime report
and delivers the report to the printer to be printed. Probably the return value
is not interesting, and caching it is silly. Even if the return value is interesting,
memoization is still inappropriate. The function might complete much more
quickly after the first run, because of the memoization, but your boss would
not be impressed, because it would have returned the old cached return value
immediately, without bothering to actually print the report.’

I sometimes enjoy the mind-bending exercise of imagining the result of memoizing the Unix
fork() function.
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3.6.3 Functions That Return References

This problem is a little more subtle. Functions that return references to values
that may be modified by their callers must not be memoized.
To see the potential problem, consider this example:

use Memoize;

sub iota {
my $n = shift;
return [1 .. $n];
}

memoize 'ijota';

$i10 = jota(10);
$310 = iota(10);
pop @$i10;

print @$j10;

The first call to 1o0ta(10) generates a new, fresh anonymous array of the numbers
from 1 to 10, and returns a reference to this array. This reference is automatically
placed in the cache, and is also stored into $110. The second call to iota(10)
fetches the same reference from the cache and stores it into $j10. Both $i10 and
$310 now refer to the same array — we say that they are aliases for the array.

When we change the value of the array via the $i10 alias, the change affects the
value that is stored in $j10! This was probably not what the caller was expecting,
and it would not have happened if we had not memoized iota. Memoization
is supposed to be an optimization. This means it is supposed to speed up the
program without changing its behavior.

The prohibition on memoizing functions that return references to values that
may be modified by the caller probably applies most commonly to object-oriented
constructor methods. Consider:

package Octopus;

sub new {
my ($class, %args) = @_;
$args{tentacles} = 8;

bless \%args => $class;

sub name {
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my $self = shift;
if (@) { $self->{name} = shift }
$self->{name};

my $junko = Octopus->new(favorite_food => "crab cakes");
$junko->name("Junko™);
my $fenchurch = Octopus->new(favorite_food => "crab cakes");

$fenchurch->name("Fenchurch™);

# This prints "Fenchurch" -- oops!

print "The name of the FIRST octopus is ", $junko->name, "\n";

Here the programmer is expecting to manufacture two different octopuses, one
named “Junko” and the other “Fenchurch.” Both octopuses enjoy crab cakes.
Unfortunately, someone has foolishly decided to memoize new(), and since the
arguments to it are the same on the second call, the memoization stub returns
the cached return value from the first call, which is a reference to the “Junko”
object. The programmer thinks that there are two octopuses, but really there is
only one, masquerading as two.

Functions whose return values depend only on their arguments, and which
do not have side effects, and which never return references are called pure func-
tions. Caching techniques are most suitable for use with pure functions, although
they can sometimes be used even with impure functions.

3.6.4 A Memoized Clock?

A simple and instructive example of a cached impure function is provided by
Perl’s $°T variable. Perl provides several convenient operators for files, such as
-M $filename, which returns the amount of time, in days, since the file named by
its argument was last modified. To compute this, Perl asks the operating system
for the last-modification time, subtracts this from the current time, and converts
to days. Since -M may be performed very frequently, it is important that it be
fast: Consider:

@result = sort { -M $a <=> -M $b } @files;
which sorts a list of files by their last modification time. It’s already expensive

to look up the last-modified times for many files, and there’s no need to make
thousands of calls to the time () function on top of that cost. Even worse, the OS
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may track the time to an accuracy of only one second, and if the system clock
happens to advance during the execution of the sort(), the result list might be
in the wrong order!

To avoid these problems, Perl does not look up the current time whenever
a -M operation is performed. Instead, when the program is first run, Perl caches
the current time in the special $°T variable, and uses that as the current time
whenever -M is invoked. Most programs are short-lived, and most dont need
exact accuracy in the results from -M, so this is usually a good idea. Certain long-
running programs need to periodically refresh $°T by doing $°T = timeQ), to
prevent the -M results from getting too far out of date. When caching an impure
function, it is usually a good idea to provide an expiration regime, in which old
cached values are eventually discarded and refreshed. It is also prudent to allow
the programmer a way to flush the entire cache. The Memoize module provides
the opportunity to plug in a cache expiry manager.

3.6.5 Very Fast Functions

I once talked to a programmer who complained that when he memoized his
function, it got slower instead of faster. It turned out that the function he was
trying to speed up was:

sub square { $_[0] * $_[0] }

Caching, like all techniques, is a tradeoff. The potential benefit is that you make
fewer calls to the original function. The cost is that your program must examine
the cache on every call. Earlier, we saw the formula 4f — K, which expresses the
amount of time saved by memoization. If 4f < K, then the memoized version
will be slower than the unmemoized version. 4 is the cache hit rate and is between
0 and 1. f'is the original running time of the function, and Kis the average time
needed to check the cache. If fis smaller than K, 4f' < K will be inevitable.
If the cost of examining the cache is larger than the cost of calling the original
function, memoization does not make sense. You can't save time by eliminating
“unnecessary” calls because it takes longer to find out that the call is unnecessary
than it does to make the call in the first place.

In our square example, the function is doing a single multiplication. Check-
ing a cache requires a hash lookup; this includes computation of a hash value
(many multiplications and additions), then indexing into the hash bucket array,
and possibly a search of a linked list. There is no way this is going to beat a single
multiplication. In fact, almost nothing beats a single multiplication. You can't
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6

speed up the square function, by memoization or any other technique, because
it is already almost as fast as any function can possibly be.

3.7 KEY GENERATION

The memoizer we saw earlier has at least one serious problem. It needs to turn
the function arguments into a hash key, and the way it does that is with join:
my $key = join ',', @_;
This works for functions with only one argument, and it works for functions
whose arguments never contain commas, including all functions whose argu-

ments are numbers. But if the function arguments may contain commas, it
might fail, because the same key is computed for these two calls:

Func("x,", "y");
func("x", ",y";

When the first call is made, the return value will be stored in the cache under
the key "x,y". When the second call is made, the true function will not be
consulted. Instead the cached value from the first call will be returned. But the
function might have wanted to return a different value — the memoization code
has confused these two argument lists, resulting in a false cache hit.

Since this can fail only for functions whose arguments may contain commas,
it may not be a consideration. Even if the function arguments may contain
commas, it's possible that there is some other character that they will never
contain. The Perl special variable $; is sometimes used here. It normally contains
character #28, which is the control-backslash character. If the key generator uses
join $; , @_, it will fail only when the function arguments contain control-
backslash; it is often possible to be sure this will never occur. But often we have
a function whose argument could contain absolutely anything, and one of these
partial hacks won’t work reliably.

This can be fixed, because there’s always a way to turn any data structure,
such as an argument list, into a string in a faithful way, so that different structures
become different strings.®

To see this, just realize that there must be some difference in the way the two structures are
represented in memory, and that the computer’s memory is itself nothing more than a very long
string.
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One strategy would be to use the Storable or FreezeThaw module to turn
the argument list into a string. A much more efficient strategy is to use escape
sequences:

my @args = @_;
s/C([\\,1)/\\$1/g for @args;
my $key = join ",", @args;

Here we insert a backslash character before every comma or backslash in the
original arguments, then join the results together with unbackslashed com-
mas. The problem calls we saw earlier are no longer problems, because the
two argument lists are transformed to different keys: one to 'x\,,y" and the
other to 'x,\,y". (An exercise: Why is it necessary to put a backslash before
every backslash character as well as before every comma?)

However, correctness has been bought at a stiff performance price. The
escape character code is much slower than the simple join—about ten times
slower even for a simple argument list such as (1,2) — and it must be performed
on every call to the function. Normally, we laugh at people who are willing to
trade correctness for speed, since it doesn’t matter how quickly one is able to find
the wrong answer. But this is an unusual circumstance. Since the only purpose
of memoization is to speed up a function, we want the overhead to be as small
as possible.

We'll adopt a compromise. The default behavior of memoize will be fast, but
not correct in all cases. We'll give the user of memoize an escape hatch to fix this.
If the user doesn’t like the default key-generation method, they may supply an
alternative, which memoize will use instead.

The change is simple:

sub memoize {

my ($func, $keygen) = @_;

my %cache;

my $stub = sub {
my $key = $keygen ? $keygen->(@.) : join ',', @_;
$cache{$key} = $func->(@_) unless exists $cache{$key};
return $cache{$key};

};

return $stub;

The stub returned by memoize looks to see if a $keygen function was supplied
when the original function was memoized. If so, it uses the keygen function to

CODE LIBRARY

memoize-norml
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CODE LIBRARY

memoize-norm2

construct the hash key; if not, it uses the default method. The extra test is fairly
cheap, but we can eliminate it if we want to by performing the test for $keygen
once, at the time the function is memoized, instead of once for each call to the
memoized function:

sub memoize {
my ($func, $keygen) = @_;
my %cache;
my $stub = $keygen ?
sub { my $key = $keygen->(@_);
$cache{$key} = $func->(@_) unless exists $cache{$key};
return $cache{$key};

sub { my $key = join ',', @_;
$cache{$key} = $func->(@_) unless exists $cache{$key};
return $cache{$key};

return $stub;

We can pull an even better trick here. In these versions of memoize, $keygen is
an anonymous function that has to be invoked on each call to the memoized
function. Perl, unfortunately, has a relatively high overhead for function calls,
and since the purpose of memoize is to speed things up, wed like to avoid this if
we can.

Perl’s eval feature comes to the rescue here. Instead of specifying $keygen as
a reference to a key-generation function, we'll pass in a string that contains the
code to generate the key, and incorporate this code directly into the stub, rather
than as a sub-function that the stub must call.

To use this version of memoize, we will say something like this:

$memoized = memoize(\&fib, gq{my @args = @_;
s/([\\,1)/\\$1/g for @args;

join ',', @args;

b

memoize will interpolate this bit of code into the appropriate place in a template
of the memoized function (this is called in/ining) and use eval to compile the
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result into a real function:

sub memoize { CODE LIBRARY

my ($func, $keygen) = @_; memoize-norm3

$keygen ||= gq{join ',", @_};

my %cache;
my $newcode = q{
sub { my $key = do { KEYGEN };
$cache{$key} = $func->(@_) unless exists $cache{$key};
return $cache{$key};

1
$newcode =~ s/KEYGEN/$keygen/g;
return eval $newcode;

Here we used Perl’s q{. ..} operator, which is identical with '...", except that
single-quote characters aren’t special inside of g{...}. Instead, the q{...} con-
struction ends at the first matching } character. If we hadnt used q{...} here,
the third line would have been rather cryptic:

$keygen ||= "join \',\", @_';

We used the s/// operator to inline the value of $keygen, instead of simply
interpolating it into a double-quoted string. This is slightly less efficient, but it
needs to be done only once per memoized function, so it probably doesn't matter.
The benefit is that with the s/// technique, the $newcode variable is easy to read;
if we had used string interpolation, it would have been:
my $newcode = "

sub { my \$key = do { $keygen };

\$cache{\$key} = \$func->(\@_) unless exists \$cache{\$key};

return \$cache{\$key};

Here the backslashes clutter up the code. A maintenance programmer reading
this might not notice that $keygen is being interpolated even though everything
else is backslashed. With the s/// technique, KEYGEN stands out clearly.

For this example, the cache management overhead is about 37% lower with
the inlining version of memoize.
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CODE LIBRARY

memoize-norm4

It’s easy to tweak this version so that it still accepts a function reference the
way the previous one did:

sub memoize {
my ($func, $keygen) = @_;
my $keyfunc;
if (Skeygen eq '') {
$keygen = gq{join ',', @_}
} elsif (UNIVERSAL::isa($keygen, 'CODE')) {
$keyfunc = $keygen;
$keygen = q{$keyfunc->(@_)};
}
my %cache;
my $newcode = qf
sub { my $key = do { KEYGEN };
$cache{$key} = $func->(@_) unless exists $cache{$key};
return $cache{$key};

b
$newcode =~ s/KEYGEN/$keygen/g;

return eval $newcode;

Here, if no key generator is supplied, we inline join ',', @_ as usual. If
$keygen is a function reference, we can’t simply inline it, because it will turn
into something useless like CODE(0x436c1d). Instead, we save the function refer-
ence in the $keyfunc variable and inline some code that will call the function via
$keyfunc.

The UNIVERSAL: :isa($keygen, 'CODE') line requires some explanation. We
want to test to see if $keygen is a code reference. The obvious way of doing
that is:

if (ref($keygen) eq 'CODE') { ... }

Unfortunately, the Perl ref function is broken, because it confuses two different
properties of its argument. If $keygen is a blessed code reference, the test above
will fail, because ref will return the name of the class into which $keygen has been
blessed. Using UNIVERSAL: :isa avoids this problem. It’s also possible, although
much less likely, that the test could yield true for a non-code reference; this will
happen if someone has been silly enough to bless the non-code reference into
the class CODE.
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3.7.1 More Applications of User-Supplied Key Generators

With any of these key-generation features, users of our memoize function have
escape hatches if the join method doesn’t work correctly for the function they
are trying to memoize. They can substitute a key generator based on Storable
or the escape-character method or whatever is appropriate.

User-supplied key generators solve the problems that may occur when two
different argument lists hash to the same key. They also solve the converse
problem, which occurs when two equivalent argument lists hash to dif-
ferent keys.

Consider a function whose argument is a hash, which might contain any, all,
or none of the keys A, B, and C, each with an associated numeric value. Further,
suppose that B, if omitted, defaults to 17, and A defaults to 32:

sub example {
my %args @_;
$args{A} = 32 unless defined $args{A};
$args{B} = 17 unless defined $args{B};
# ...

Then the following calls are all equivalent:

example(C => 99);

example(C => 99, A => 32);
example(A => 32, C => 99);
example(B => 17, C => 99);
example(C => 99, B => 17);
example(A => 32, C => 99, B => 17);
example(B => 17, A => 32, C => 99);

(etc.)

The join method of key construction generates a different key for each of these
calls ("C,99" versus "A,32,C,99" versus "C,99,A,32" and so forth). The cache
manager will therefore miss opportunities to avoid calling the real example()
function. A call to example(A => 32, C => 99) must produce the same result
as a call to example(C => 99, A => 32), but the cache manager doesn’t know
that, because the argument lists are superficially different. If we can arrange
that equivalent argument lists are transformed to the same hash key, the cache
manager will return the same value for example(C => 99, A => 32) that it had
previously computed for example(A => 32, C => 99), without the redundant
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call to example. This will increase the cache hit rate 4 in the formula 4/ — K that
expresses the speed-up from memoization. The following key generator does the

trick:
sub {
my %h = @_;
$h{A} = 32 unless defined $h{A};

$h{B} = 17 unless defined $h{B};
join ",", Gh{'A",'B","'C'}:

Each of the eight equivalent calls (of which example(C => 99, A => 32) was
one) receives a key of "32,17,99" from this function. Here we pay an up-front
cost: This key generator takes about ten times as long as the simple join gen-
erator, so the K in the /f — K formula is larger. Whether this cost is repaid
depends on how expensive it is to call the real function, f; and on the size
of the increase of cache hits frequency, 4. As usual, there is no substitute for
benchmarking.

3.7.2 Inlined Cache Manager with Argument Normalizer

Here’s an interesting trick we can play with the inlined key-generation code.
Consider the following function, a variation on the example we just saw:

sub example {
my ($a, $b, $c) = @_;
$a = 32 unless defined $a;
$b = 17 unless defined $b;

# more calculation here ...

A suitable key generator might be:

my ($a, $b, $c) = @_;
$a = 32 unless defined $a;
$§b = 17 unless defined $b;
join ',', $%$a, $b, $c;

It’s a little irritating to have to repeat the code that sets the defaults for the
arguments, and equally irritating to have to run it twice. If we change the
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key-generation code as follows, we will be able to remove the argument checking
from the example function:

$_[0] = 32 unless defined $_[0];
$_[1] = 17 unless defined $_[1];
join ',', @_;

When this is inlined into the memoize function, the result is:

sub { my $key = do { $_[0] 32 unless defined $_[0];
$_[1] 17 unless defined $_[1];
join ',', @_;
1
$cache{$key} = $func->(@_) unless exists $cache{Skey};

return $cache{$key};

Notice what happens here. The key is generated as before, but there is a side
effect: @_ is modified. If there is a cache miss, the memoized function calls $func
with the modified @_. Since @_ has been modified to include the default values
already, we can omit the default-setting code from the original function:

sub example {
my ($a, $b, $c) = @_;
## defaults set by key generation code
## $a = 32 unless defined $a;
## $b 17 unless defined $b;
# more calculation here ...

Of course, once we've modified the example function in this way, we can’t turn
the memoization off, because essential functionality has been moved into the key
generator.

Another danger with this technique is that modifying @_ can have peculiar
effects back in the calling function. Elements of @_ are aliased to the correspond-
ing arguments back in the caller, and assigning to elements of @_in the memoized
function can modify variables outside the memoized function. Here is a simple
example:

sub set_to_57 {
$_[0] = 57;
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my $x = 119;
set_to_57(%$x);

This does set $x to 57, as if we had done $x = 57, even though the assignment
is performed outside the scope of $x and shouldn’t be able to affect it. Our
assignments inside the key-generator code may have similar effects.

Sometimes this feature of Perl is useful, but most often it is more trouble
than it is worth, and we normally avoid it. We do this by never operating on @_
directly, but by copying its contents into a series of lexical variables as soon as
the function is called:

sub safe_function {
my ($n) = @_;
$n = 57; # does *not* set $x to 57

my $x = 119;

safe_function($x);

By combining these techniques, we can get a version of the key-generation code
that obviates the need for the default-setting code in the real function, but which
is still safe:

memoize(\&example, qf{
my ($a, $b, $c) = @_;
$a = 32 unless defined $a;
$b = 17 unless defined $b;
@_ = ($a, $b, $O); # line 5
join ',', @_;

b

The elements of @_ are aliases for the arguments back in the calling function,
but @_ itself isnt. The assignment to @_ on line 5 doesnt overwrite the val-
ues back in the caller; it discards the aliases entirely and replaces the contents
of @_ with the new values. This trick works only when the key-generation
code is inlined into the memoized function; if the key-generation code is
called as a subroutine, the change to @ has no effect after the subroutine
returns.
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3.7.3 Functions with Reference Arguments

Here’s another problem solved by the custom key-generator feature. Consider
this function:

sub is_in {
my ($needle, $haystack) = @_;
for my $item (@$haystack) {
return 1 if $item == $needle;

}

return;

The function takes $needle, which is a number, and $haystack, which is a list of
numbers, and returns true if and only if $haystack contains $needle. A typical
call is:

if (is_in($my_id, \@employee_ids)) { ... }

We might like to try memoizing is_in, but a possible problem is that the
$haystack argument is a reference. When it is handled by the join function, it
turns into a string like ARRAY (0x436c¢1d). If we later call is_in() with a $haystack
argument that refers to a different array with the same contents, the hash key
will be different, which may not be what we want; conversely, if the contents of
@employee_ids change, the hash key will still be the same, which certainly isn’t
what we want. The key generator is generating the key from the identity of the
array, but the is_in() function doesnt care about the identity of the array; it
cares only about the contents. A more appropriate key-generation function in
this case is:

sub { join ",", $_[0], @{$_[1]} }
Again, whether this actually produces a performance win depends on many
circumstances that will be hard to foresee. When performance is important, it

is essential to gather real data. Long experience has shown that even experts are
likely to guess wrong about what is fast and what is slow.

3.7.4 Partitioning

The find_share function of Chapter 1 provides a convenient example of a func-
tion for which memoization fixes slow recursion, as well as requiring a custom
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key generator:

sub find_share {
my ($target, $treasures) = @_;
return [] if $target == 0;
return if $target < 0 || @$treasures == 0;
my ($first, @rest) = @$treasures;
my $solution = find_share($target-$first, \@rest);
return [$first, @$solution] if $solution;

return find_share($target , \@rest);

As you'll recall, this function takes an array of treasures and a target value, and
tries to select a subset of the treasures that total the target value exactly. If there
is such a set, it returns an array with just those treasures; if not, it returns
undef.

We saw in Chapter 1 that this function has the same problem as the fib func-
tion: It can be slow, because it repeats the same work over and over again. When
trying to select treasures from 1 2 3 4 5 6 7 8 9 10 that total 53, find_share
comes upon the same situation twice: It finds that 14+2+346 = 12, and invokes
find_share(41, [7,8,9,10]), which eventually returns undefined. Then later,
it finds that 1 + 2 + 4 + 5 = 12, and invokes find_share(41, [7,8,9,10]) a
second time. Clearly, this is a good opportunity to try some caching.

For even this simple case, memoization yields a speed-up of about 68%. For
larger examples, such as find_share (200, [1..201), the speedup is larger, about
82%. In some cases, memoization can make the difference between a practical
and an impractical algorithm. The unmemoized version of find_share([1..20],
210) takes several thousand times longer to run than the memoized version. (I used
the key generation function sub {join "-", @{$_[1]}, $_[0]}.)

3.7.5 Custom Key Generation for Impure Functions

Custom key generation can also be used to deal with certain kinds of functions
that depend on information other than their arguments.

Let’s consider a long-running network server program whose job is to sell
some product, such as pizzas or weapons-grade plutonium. The cost of a pizza
or a canister of plutonium includes the cost of delivery, which in turn depends
on the current hour of the day and day of the week. Delivery late at night and
on weekends is more expensive because fewer delivery persons are available and
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nobody likes to work at 3 AM.” The server might contain a function something

like this:

sub delivery_charge {

my ($quantity_ordered) = @_; deTivery-charge
my ($hour, $day_of_week) = (localtime)[2,6];
# perform complex computation involving $weight, $gross_cost,

# $hour, $day_of_week, and $quantity_ordered
# ...
return $delivery_charge;

Because the function is complicated, we would like to memoize it. The default
key generator, join(',', @), is unsuitable here, because we would lose the
time dependence of the delivery charge. But it’s easy to solve the problem with
a custom key-generation function such as:

sub delivery_charge_key {
join ',', @_, (localtime)[2,6];

delivery_charge is not a pure function, but in this case it may not matter. The
only real issue is whether there will be enough cache hits to gain a performance
win. We might expect the function to have many cache misses for the first week,
until the day of the week rolls over, and then to start seeing more cache hits. In
this case the effectiveness of the caching might depend on the longevity of the
program. Similarly, we might wonder if the following key-generation function
wouldn’t be better:

sub delivery_charge_key {
my ($hour, $day_of_week) = (localtime)[2,6];
my $weekend = $day_of_week == 0 || $day_of_week == 6;

join ',', @_, S$hour, $weekend;

This function takes longer to run, but might get more cache hits because it
recognizes that values cached on Monday may be used again on Tuesday and
Wednesday. Again, which is best will depend on subtle factors in the program’s
behavior.

7 Most plutonium is ordered late at night in spite of the extra costs.
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3.8 CACHING IN OBJECT METHODS

For object methods, it often makes little sense to store the cached values in a
separate hash. Consider an Investor objectin a program written by an investment
bank. The object represents one of the bank’s customers:

package Investor;

# Compute total amount currently invested
sub total {
my $self = shift;
# ... complex computation performed here ...

return $total;

If the $total is not expected to change, we might add caching to it, using the
object’s identity as a key into the cache hash:

# Compute total amount currently invested
{ my %cache;
sub total {
my $self = shift;
return $cache{$self} if exists $cache{$self};
# ... complex computation performed here ...
return $cache{$self} = $total;

However, this technique has a serious problem. When we use an object as
a hash key, Perl converts it to a string. The typical hash key will look like
Investor=HASH(0x80ef8dc). The hexadecimal numeral is the address at which
the object’s data is actually stored. It is essential that this key be different for
every two objects, or we run the risk of false cache hits, where we retrieve one
object’s total while thinking that it belongs to a different object. In Perl, these
hash keys are indeed distinct for all the live objects in the system at any given
time, but no guarantee is made about dead objects. If an object is destroyed and
a new object is created, the new object might very well exist at the same memory
address formerly occupied by the old object and thus be confused with it:

# here 90,000 is returned from the cache
$old_total = $old_object->total();
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undef $o1d_object;
$new_object = Investor->new();
$new_total = $new_object->total();

Here we ask for the total for the new investor. It should be 0, since the investor
is new. But instead, the ->total method happens to look in the cache under the
same hash key that was used by the $o1d_object that was recently destroyed; the
method sees the 90000 stored there, and returns it erroneously. This problem can
be solved with a DESTROY method that deletes an object’s data from the cache,
or by associating a unique, non-re-usable ID number with every object in the
program, and using the ID number as the hash key, but there is a much more
straightforward solution.

In an OOP context, the cache hash technique is peculiar, because there is a
more natural place to store the cached data: as member data in the object itself.
A cached total becomes another property that might or might not be carried by
each individual object:

# Compute total amount currently invested
sub total {
my $self = shift;
return $self->{cached_total} if exists $self->{cached_total};
# ... complex computation performed here ...
return $self->{cached_total} = $total;

Here the logic is exactly the same as before; the only difference is that the
method stores the total for each object in the object itself, instead of in an
auxiliary hash. This avoids the problem of hash key collision that arose with the
auxiliary hash.

Another advantage of this technique is that the space devoted to storage of
the cached total is automatically reclaimed when the object is destroyed. With
the auxiliary hash, each cached value would persist forever, even after the object
to which it belonged was destroyed.

Finally, storing the cached information in each object allows more flexible
control over when it is expired. In our example total computes the total amount
of money that a certain investor has invested. Caching this total may be appro-
priate since investors may not invest new money too frequently. But caching it
forever is probably not appropriate. In this example, whenever an investor invests
more money, we need some way of signalling the total function that the cached
total is no longer correct, and must be recomputed from scratch. This is called
expiring the cached value.
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With the auxiliary hash technique, there was no way to do this without

adding a special-purpose method in the scope of the cache hash, something
like this:

# Compute total amount currently invested
{ my %cache;
sub total {
my $self = shift;
return $cache{$self} if exists $cache{$self};
# ... complex computation performed here ...
return $cache{$self} = $total;

sub expire_total {
my $self = shift;
delete $cache{$self};

sub invest {
my ($self, $amount, ...) = @_;
$self->expire_total;

With the object-oriented technique, no special method is necessary, because each
method can directly expire the cached total if it needs to:

# Compute total amount currently invested
sub total {
my $self = shift;
return $self->{cached_total} if exists $self->{cached_total};
# ... complex computation performed here ...
return $self->{cached_total} = $total;

sub invest {
my ($self, $amount, ...) = @_;
delete $self->{cached_total};
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3.8.1 Memoization of Object Methods

As we saw, for object methods, we often like to cache each computed value
with the object for which it is relevant, instead of in one separate hash. The
memoize function we saw earlier doesn’t do this, but it’s not hard to build one
that does:

sub memoize_method { CODE LIBRARY

my ($method, $key) = @_; memo7ze-method
return sub {

my $self = shift;

return $self->{$key} if exists $self->{$key};

return $self->{$key} = $method->($self, @ );
3

$method is a reference to the true method. $key is the name of the slot in each
object in which the cached values will be stored. The stub function returned here
is suitable for use as a method. When the stub is invoked, it retrieves the object
on whose behalf it was called, just like any other method; then it looks in the
object for member data named $key to see if a value is cached there. If so, the
stub returns the cached value; if not, it calls the real method, caches the result in
the object, and returns the new cached result.
To use this, we might write something like this:

*Investor::total = memoize_method(\&Investor::total, 'cached_total');

$investor_bob->total;

This installs the stub in the symbol table in place of the original method.
Alternatively, we might use:

$memoized_total = memoize_method(\&Investor::total, 'cached_total');

$investor_bob->$memoized_total;

These are not quite the same. In the former case, all calls to ->total will use
the memoized version of the method, including calls from subclasses that inherit
the method. In the latter case, we get the memoized version of the method only
when we explicitly ask for it by using the ->$memoized(. ..) notation.
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3.9 PERSISTENT CACHES

Before we leave the topic of automatic memoization, we'll see a few peripheral
techniques. We saw how a function could be replaced with a memoized version
that stored return values in a cache; the cache was simply a hash variable.

In Perl, one can use the tie operator to associate a hash variable with a disk
database, so that data stored in the hash is automatically written to the disk, and
data fetched back from the hash actually comes from the disk. To add this feature
to our memoize function is simple:

use DB_File;

sub memoize {

my ($func, $keygen, $file) = @_;

my %cache;

if (defined $file) {
tie %cache => 'DB_File', $file, O_RDWR|O_CREAT, 0666

or die "Couldn’t access cache file $file: $!; aborting";

}

my $stub = sub {
my $key = $keygen ? $keygen->(@.) : join ',', @_;
$cache{$key} = $func->(@_) unless exists $cache{$key};
return $cache{$key};

};

return $stub;

Here we've added an optional third parameter, which is the name of the disk file
that will receive the cached data. If supplied, we use tie to tie the hash to the
file. Note that if you don’t use this feature, you pay hardly any cost at all—a
single defined() test at the time you call memoize ().

When the cache hash is tied to a disk file in this way, the cache becomes
persistent. Data stored in the cache on one run of the program remains in the
file after the program has exited, and is available to the function the next time
the program is run. The program is incrementally replacing the function with a
lookup table on the disk. The cost to the programmer is nearly zero, since we
did not have to change any of the code in the original function.

If we get tired of waiting for the lookup table to be completely populated,
we can force the issue. We can write a tiny program that does nothing but call the
memoized function over and over with different arguments each time. We start
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it up on Friday afternoon and go home for the weekend. When we come back on
Monday, the persistent cache will have the values of the function precomputed.
When we run our real application, all calls to the memoized function will return
almost instantly, since the values have been saved in the database.

Once again, this may not be a win. Remember, the speed-up from memoiza-
tion is #f — K, where Kis the overhead of managing the cache. If K'is sufficiently
large, it will overwhelm the gains from the 4f part of the formula, as in the
sub { $_[0] * $_[0] } example from Section 3.6. When we store cache data
in a disk file, the overhead K can be many times greater than normal, because
our program will have to make an operating-system request to look in the disk
database.

An alternative and more flexible interface is to allow the user of memoize ()
to supply their own tied hash:

sub memoize {
my ($func, $keygen, $cache) = @_;
$cache = {} unless defined $cache;
my $stub = sub {
my $key = $keygen ? $keygen->(@.) : join ',', @_;

$cache->{$key} = $func->(@_) unless exists $cache->{$key};

return $cache->{$key};
};

return $stub;

This allows the user to supply a cache that is tied to a disk file using their favorite
DBM implementation, even one we've never heard of. They could also pass in an
ordinary hash; that would allow them to erase the cache or to expire old values
from it if they wanted to.

3.10 ALTERNATIVES TO MEMOIZATION

Most pure functions present an opportunity for caching. Although it may appear
at first that pure functions are rare, they do appear with some frequency. One
place where pure functions are especially common is as the comparator functions
used in sorting,.

The Perl built-in sort operator is generic, in that it can sort a list of any kind
of data into any order desired by the program. By default, it sorts a list of strings
into alphabetical order, but the programmer may optionally supply a comparator
function that tells Perl how to reorder sort’s argument list. The comparator
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function is called repeatedly, each time with two different elements from the list
to be sorted, and must return a negative value if the two elements are in the
correct order, a positive value if the two elements are in the wrong order, and
zero if it doesn’t care. Typically, a comparator function’s return value depends
only on the values of its arguments, the two list items it is comparing, so it is a
pure function.

Probably the simplest example of a comparator function is the comparator
that compares numbers for sorting into numerical order:

@sorted_numbers = sort { $a <=> $b } @numbers;

Here { $a <=> $b } is the comparator function. The sort operator examines
the list of @numbers, sets $a and $b to the numbers it wishes to have compared,
and invokes the comparator function. <=> is a special Perl operator that returns
a negative value if $a is less than $b, a positive value if $a is greater than $b, and
zero if $a and $b are equal.® cmp is an analogous operator for strings; this is the
default that Perl uses if you don't specify an explicit comparator.

An alternative syntax uses a named function instead of a bare block:

@sorted_numbers = sort numerically @numbers;
sub numerically { $a <=> $b }

This is equivalent to the bare-block version.
A more interesting example sorts a list of date strings of the form "Apr 16,
1945" into chronological order:

@sorted_dates = sort chronologically @dates;

%m2n =
( jan = 1, feb => 2, mar => 3,
apr => 4, may => 5, jun => 6,
jul => 7, aug => 8, sep => 9,
oct => 10, nov => 11, dec => 12, );

sub chronologically {
my ($am, $ad, $ay) =
($a =- /Qw{3}) (\d+), (\d+)/);

Subtraction would work equally well here; <=> is used in comparators instead of plain subtraction
because of its documentative value.
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my ($bm, $bd, $by) =
(Sb =- /Qw{3}) (\d+), (\d+)/);

fay <=> $by
|l $m2n{l1c $am} <=> $m2n{1c $bm}
|l $ad <=> $bd;

}

The two date strings to be compared are loaded into $a and $b, as before, and
then split up into $ay, $by, $am, and so forth. $ay and $by, the years, are
compared first. The || operator here is a common idiom in sort comparators
for sorting by secondary keys. The || operator returns its left operand, unless
that is zero, in which case it returns its right operand. If the years are the same,
then $ay <=> $by returns zero, and the || operator passes control to the part
of the expression involving the months, which are used to break the tie. But if
the years are different, then the result of the first <=> is nonzero, and this is the
result of the | | expression, instructing sort how to order $a and $b in the result
list without ever having looked at the months or the days. If control passes to
the $am <=> $bm part, the same thing happens. The months are compared; if the
result is conclusive, the function returns immediately, and if the months are the
same, control passes to the final tiebreaker of comparing the days.

Internally, Perl’s sort operator has been implemented with various algo-
rithms that have O(z log #) running time. This means that to sort a list that is
n times larger than another typically takes somewhat more than 7 times as long.
If the list size doubles, the running time more than doubles. The following table
compares the length of the argument list with the number of calls typically made
to the comparator function:

Length # calls calls / element
5 7 1.40
10 26 2.60
20 60 3.00
40 195 4.87
80 417 5.21
100 569 5.69
1000 9502 9.50
10000 139136 13.91

I got the “# calls” column by generating a list of random numbers of the indicated
length and sorting it with a comparator function that incremented a counter each
time it was called. The number of calls will vary depending on the list and on
the comparator function, but these values are typical.
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Now consider alist of 10,000 dates. 139,136 calls are made to the comparator
function; each call performs two pattern-match operations, so there are 278,272
pattern matches in all. This means each date is split up into year, month, and
day 27.8 times on average. Since the three components for a given date never
change, it’s clear that 26.8 of these matchings are wasted.

The first thing that might come to mind is to memoize the chronologically
function, but this doesnt work well in practice. Although sort will call
chronologically repeatedly with the same date, it won’t call it twice on the
same pair of dates (Unless, of course, the input list contains duplicate dates.)
Since the hash keys must incorporate both arguments, the memoized function
will never have a cache hit.

Instead, we'll do something slightly different, and memoize just the expensive
part of the function. This will require a version of memoize() that can handle a
function that returns a list.

@sorted_dates = sort chronologically @dates;

%m2n =
( jan = 1, feb => 2, mar => 3,
apr => 4, may => 5, jun => 6,
jul => 7, aug => 8, sep => 9,
oct => 10, nov => 11, dec => 12, );

sub chronologically {
split_date($a);
split_date($h);

my ($am, $ad, $ay)
my ($bm, $bd, $by)

fay <=> $by
[ $m2n{1c $am} <=> $m2n{lc $bm}
[ $ad <=> $bd;

sub split_date {
$_[0] =~ /Q\w{3}) (\d+), (\d+)/;

If we set up caching on split_date, we'll still make 278,272 calls to it, but
268,272 will result in cache hits, and only the remaining 10,000 will require
pattern matching. The only catch is that we'll have to write the caching code by
hand, because sp1it_date returns a list, and our memoize functions deal correctly
only with functions that return scalars.

At this point, we could go in three directions. We could enhance our memoize
function to deal correctly with list-context returns. (Or we could use the CPAN
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Memoize module, which does work correctly for functions that return lists.) We
could write the caching code manually. But it’s more instructive to sidestep the
problem by replacing split_date with a function that returns a scalar. If the
scalar is constructed correctly, we will be able to dispense with the complicated
I logic in chronologically and just use a simple string compare.

Here’s the idea: We will split the date, as before, but instead of returning a
list of fields, we will pack the fields into a single string. The fields will appear in
the string in the order we need to examine them, with the year first, then the
month, then the day. The string for "Apr 16, 1945" will be "19450416". When
we compare strings with cmp, Perl will stop comparing as soon as possible, so
if one string begins with "1998..." and another with "1996. . ." Perl will know
the result as soon as it sees the fourth character, and won’t bother to examine the
month or day. String comparison is very fast, likely to beat out a sequence of
<=>sand | |s.

Here’s the modified code:
@sorted_dates = sort chronologically @dates;
chrono-3
%m2n =

( jan => 1, feb => 2, mar => 3,
apr => 4, may => 5, jun => 6,
jul => 7, aug => 8, sep => 9,
oct => 10, nov => 11, dec => 12, );

sub chronologically {
date_to_string($a) cmp date_to_string($h)

sub date_to_string {
my ($m, $d, $y) = ($_[0] =~ /Q\w{3}) (\d+), (\d+)/);
sprintf "%04d%02d%02d", $y, $m2n{lc $m}, $d;

Now we can memoize date_to_string. Whether this will win over the previous
version depends on whether the sprintf plus cmp is faster than the <=> plus ||.
As usual, a benchmark is required; it turns out that the code with the sprintf is
about twice as fast.’”

This comes as a surprise to many people, especially C programmers who expect sprintf to be
slow. While sprintf is slow, so is Petl, so that dispatching a bunch of extra <=> and | | operations
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Sorting is often one of those places in the program where we need to
squeeze out as much performance as possible. For a list of 10,000 dates, we call
sprintf exactly 10,000 times (once date_to_string is memoized) but we still
call date_to_string itself 278,272 times. As the list of dates becomes longer, this
disparity will increase, and the function calls will eventually come to dominate
the running time of the sort.

We can get more speed by simplifying the cache handling and eliminating the
268,272 extra function calls. To do this, we go back to handwritten caching code:

{ my %cache;

sub chronologically {

($cache{$a} ||= date_to_string($a))
cmp
($cache{$b} ||= date_to_string($b))
}
}

Here we make use of the ||= operator, which seems almost custom-made for
caching applications. $x ||= $y yields the value of $x if it is true; if not, it
assigns $y to $x and yields the value of $y. $cache{$a} ||= date_to_string($a)

checks to see if $cache{$a} has a true value; if so, that is the value used in the
comparison with the cmp operator. If nothing is cached yet, then $cache{$a} is
false, and chronologically calls date_to_string, stores the result in the cache,
and uses the result in the comparison. This inline cache technique is called the
Orcish Maneuver, because its essential features are the | | and the cache.'®

Memoizing date_to_string yields a two-and-a-half-fold speed-up; replac-
ing the memoization with the Orcish Maneuver yields an additional twofold
speed-up.

Astute readers will note that the Orcish Maneuver doesn't always work quite
right. In this example, it’s impossible for date_to_string to ever return a false
value. But let’s return for a moment to the example where we compute the total
amount invested for each investor:

{ my %cache;
sub by_total_invested {
($cache{$a} ||= total_invested($a))

takes a long time compared to sprintf. This is just another example of why the benchmark really
is necessary.

Joseph Hall, author of Effective Perl Programming, is responsible for this name.



3.0 ALTERNATIVES TO MEMOIZATION 107

<=>

($cache{$b} ||= total_invested($b))

Suppose Luke the Hermit has invested no money at all. The first time he appears
in by_total_invested, we call total_invested for Luke, and we get back 0. We
store this 0 in the cache under Luke’s key. The next time Luke appears, we check
the cache and find that the value stored there is 0. Because this value is false, we
call total_invested again, even though we had a cache hit. The problem here
is that the | |= operator doesn't distinguish between a cache miss and a cache hit
where the cached value happens to be false.

The Lisp people have a name for this phenomenon: They call it the semipredi-
cate problem. A predicate s a function that returns a boolean value. A semipredicate
can return a specific false value, indicating failure, or one of many meaningful
true values, indicating success. The $cache{$a} is a semipredicate because it
might return 0, or any of an infinity of useful true values. We get into trouble
when 0 is also one of the true values, because we can’t distinguish it from the 0
that means false. This is the semipredicate problem.

In our present example, the semipredicate problem won’t cause much trouble.
The only cost is a few extra calls to total_invested for people who haven’t
invested any money. If we find that these extra calls are slowing down our sorting
significantly (unlikely, but possible) we can replace the comparator function with
the following version:

{ my %cache;
sub by_total_invested {
(exists $cache{$a} ? $cache{$a} : ($cache{$a}
<=>
(exists $cache{$b} ? $cache{$b} : ($cache{$b}
}

total_invested($a)))

total_invested($b)))

This version uses the reliable exists operator to check to see if the cache
is populated. Even if the value stored in the cache is false, exists will still
return true. Beware, though, that this costs about 10% more than the simpler
version.

There’s an alternative that costs hardly anything extra, but does have the
disadvantage of being rather bizarre. It’s based on the following trick: When the
Perl string "0e0" is used as a number, it behaves exactly like 0; the e0 is interpreted
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by Perl as a scientific notation exponent. But unlike an ordinary 0, the string
"0e0" is true rather than false."!

If we write by_total_invested like this, we avoid the semipredicate problem
with hardly any extra cost:

{ my %cache;
sub by_total_invested {

($cache{$a} ||= total_invested($a) || "0e0")
<=>
($cache{$b} ||= total_invested($b) || "0e0")
}
}

If total_invested returns zero, the function caches "0e0" instead. The next time
we look up the total invested by the same customer, the function sees "0e0" in
the cache, and this value is true, so it doesn’t call total_invested a second time.
This "0e0" is the value given to the <=> operator for comparison, but in a numeric
comparison it behaves exactly like 0, which is just what we want. The speed cost
of the additional || operation, invoked only when a false value is returned by
total_investedQ), is tiny.

3.11 EVANGELISM

If you're trying to explain to a C programmer why Perl is good, automatic
memoization makes a wonderful example. Almost all programmers are familiar
with caching techniques. Even if they don’t use any caching techniques in their
own programs, they are certainly familiar with the concept, from caching in
web browsers, in the cache memory of their computer, in the DNS server, in
their web proxy server, or elsewhere. Caching, like most simple, useful ideas, is
ubiquitous.

Adding caching isn’t too much trouble, but it takes at least a few minutes to
modify the code. With all modifications, there’s a chance that you might make
a mistake, which has to be factored into the average time. Once you're done, it

"0e0" is hardly unique; "00" will also work, as will any string that begins with a 0 followed
by a non-numeral character, such as "0!!!!". Strings like "0!111", however, will generate an
“Argument isn’t numeric” warning if warnings are enabled. One string commonly used when a
zero-but-true value is desired is "0 but true". Perl’s warning system has a special case in it that
suppresses the usual “isn’t numeric” warning for this string.
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may turn out that the caching was a bad idea, because the cache management
overhead dominates the running time of the function, or because there aren’t as
many cache hits on a typical run as you expected there to be; then you have to
take the caching code out, and again you run the risk of making a mistake. Not
to overstate the problems, of course, but it will take at least a few minutes in each
direction.

With memoization, adding the caching code no longer takes minutes; it
takes seconds. You add one line of code:

memoize 'myfunction';

and it is impossible to make a serious mistake and break the function. If the
memoization turns out to have been a bad idea, you can turn it off again in
one second. Most programmers can appreciate the convenience of this. If you
have five minutes to explain to a C programmer what benefits Perl offers over C,
memoization is an excellent example to use.

3.12 THE BENEFITS OF SPEED

It may be tempting at this point to say that memoization is only an incremental
improvement over manual caching techniques, because it does the same thing,
and the only additional benefit is that you can turn it on and off more quickly.
But that isnt really true. When a speed and convenience difference between tools
is large enough, it changes the way you think about the tool and the ways you
can use it. To automatically memoize a function takes 1/100 as much time as to
write caching code for it manually. This is the same as the difference between
the speed of an airplane and the speed of an oxcart. To say that the airplane is
just a faster oxcart is to miss something essential: The quantitative difference is
so large that it becomes a substantive qualitative difference as well.

For example, with automatic memoization, it becomes possible to add
caching behavior to functions without having to consider the performance details
carefully in advance. Memoization is so easy that it can pay to adopt a strategy
of “shoot first and ask questions later.” If a function is slow, try slapping some
caching onto it and see if it helps matters. If a recursive function might have bad
recursion behavior, put in some caching and see if the problem goes away. If not,
you can take the caching away again and investigate more thoroughly. When the
total cost is ten seconds of programming time, you can try this without having to
think much in advance about whether it will be successful. With manual caching,
you would have to spend at least a quarter hour, which is too much to invest on
a mere fishing expedition.

109



110

cHAPTER 3 Caching and Memoization

With automatic memoization, you can enable caching behavior at run time.
For example:

sub function {
if (++$CALLS == 100) { memoize 'function'}

Here we don’t bother to memoize the function until partway through the pro-
gram’s run. When the function realizes it’s being heavily used, it enables caching
behavior. To do the same thing without automatic memoization requires a rewrite
of the function rather than the addition of a single line.

3.12.1 Profiling and Performance Analysis

Automatic memoization allows caching to be used in profiling and performance
analysis in a way that would be impractical otherwise. The typical situation
involves a large application that runs too slowly. We would like to speed it
up. We will do this by rewriting parts of the program to be faster, perhaps by
introducing a better algorithm, and possibly at the expense of a certain amount
of clarity or maintainability.

Trying to speed up every part of the program is a bad allocation of resources.
This is because of what is known as the“90-10 rule,” which says that 90% of the
execution time of a program takes place in only 10% of the code, the rest being
initialization code that is executed only once, or special-case code such as error
handlers that are executed rarely or never. If we work over the entire program
and speed up every part by 5%, we have a 5% gain. But if we can identify and
rewrite just the crucial 10% to the same degree, we will get a net 4.5% gain in
the program’s total run time at only 10% of the cost; the cost-benefit ratio is nine
times as large. So before we optimize, we would like very much to identify the
parts of the program that contribute most to the run time, and concentrate on
improving just those parts.

It’s sad when a programmer spends a week carefully optimizing a subroutine
to run 20% faster, only to discover that the program spent only 2% of its total
execution time in that subroutine, and that the week of hard work has yielded only
an 0.4% speed-up overall. Historically, programmers have been bad at guessing
which parts of the program are heavily used; we need real measurements.

Traditionally, measurements are done using a tool called a profiler. The
program is run in a special profiling environment that causes it to dump out
a record of what it is doing every so often (typically many times per second).
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Afterwards, the data is massaged into a report that lists the subroutines in which
the program spends the most execution time. There are profiler tools for Perl, but
they can be strange and hard to use. Automatic memoization is an alternative.

Run the program once and time how long it takes. Then guess which parts
of the program are bottlenecks, and memoize them. Arrange for the memoized
data to be stored in a persistent file. (Remember, this requires adding only one
line of code to the program.) Run the program a second time; this will populate
the cache on the disk. Run the program a third time. All calls to the memoized
functions will return almost immediately, because the data is residing in a disk
database; the functions do no work at all beyond what is required to get the
answers from the database. On the third run, you are simulating how quickly the
program would run if it were possible to eliminate the time taken by the target
functions. If this run is substantially faster than the unmemoized run time, you
have some candidates for optimization; if the times are similar, you know that
you should look elsewhere.

You might wonder why not simply leave the memoization in place if the
memoized run is substantially shorter, and the answer is that while memoization
might cause the target functions to run faster, it might also cause them not
to work correctly. Suppose you suspect that the bottleneck function is the one
that formats the report. While memoizing this function and having it deliver a
precached report may cause it to run faster, it is probably not what the recipient
of the report would prefer.

3.12.2  Automatic Profiling

Another profiling technique, one that’s even more flexible, uses the techniques
we've seen in this chapter, but without any actual caching. The memoize func-
tion takes an existing function and puts a cache-managing front-end onto it.
There’s no reason why this front-end has to do cache management; it could do
something else:

use Time::HiRes 'time';
my (%time, %calls);

sub profile {
my ($func, $name) = @_;
my $stub = sub {
my $start = time;
my $return = $func->(@ );

my $end = time;

CODE LIBRARY

profile
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my $elapsed = $end - $start;
$calls{$name} += 1;
$time{$name} += $elapsed;
return $return;

b

return $stub;

The profile function shown here is similar in structure to the memoize function
we saw carlier. Like memoize, it takes a function as its argument and constructs
and returns a stub, which may be called directly or installed in the symbol table
in place of the original.

When the stub is invoked, it records the current time in $start. Normally the
Perl time function returns the current time to the nearest second; the Time: :HiRes
module replaces the time function with one that has finer granularity, if possible.
The stub calls the real function and saves its return value. Then it computes the
total elapsed time and updates two hashes. One hash records, for each function,
how many calls have been made to that function; the stub simply increments
that count. The other hash records the total elapsed time spent executing each
function; the stub adds the elapsed time for the just-completed call to the total.

At the end of program execution, we can print out a report:

END {
printf STDERR "%-12s %9s %6s\n", "Function", "# calls", "Elapsed";
for my $name (sort {$time{$b} <=> $time{$a}} (keys %time)) {
printf STDERR "%-12s %9d %6.2f\n", $name, $calls{$name}, $time{$name};

The output will look something like this:

Function # calls Elapsed
printout 1 10.21
searchfor 1 0.34
page 1 0.06
check_file 18 0.01

This is output from the perldoc program that comes standard with Perl. From
this output, we can see that most of the execution time is occurring in the
printout function; if we want to make perldoc faster, this is the function we
should concentrate on.
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3.12.3 Hooks

This is clearly a very rudimentary profiling tool. A better version would use the
times() function to measure CPU time consumed instead of wall-clock time.
But the flexibility of the technique should be clear; we can put an arbitrary
front-end onto a function, or change the front-end at run time. The front-end
can perform caching, or keep track of function call data; it could validate the
function arguments if we wanted, enforce pre- and post-conditions, or whatever
else we like.






CHAPTER

ITERATORS

4] INTRODUCTION

An iterator is an object interface to a list.

The object’s member data consists of the list and some state information
marking a “current position” in the list. The iterator supports one method,
which we will call NEXTVAL. The NEXTVAL method returns the list element at the
current position and updates the current position so that the next time NEXTVAL
is called, the next list element will be returned.

Why would anyone want an object interface to a list? Why not just use a
list? There are several reasons. The simplest is that the list might be enormous, so
large that you do not want to have it in memory all at once. It is often possible
to design iterators to generate list items as they’re requested, so that only a small
part of the list need ever be in memory at once.

4.1.1 Filehandles Are Iterators

Iterators are familiar to everyone who has ever programmed in Perl, because file-
handles are iterators. When you open a file for reading, you get back a filehandle
object:

open(FILEHANDLE, 'filename');
We'll look at filehandles first because they are a familiar example that exhibit

all the advantages of iterators. A filehandle does represent a list, namely the list
of lines from a file. The NEXTVAL operation is written in Perl as <FILEHANDLE>.
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When you do <FILEHANDLE>, Perl returns the line at the current position and
updates the current position so that the next time you do <FILEHANDLE> you get
the next line.

Imagine an alternate universe in which the Perl open function yielded not a
filehandle but instead, a list of lines:

@lines = open('filename'); # alternate universe interface

Almost any programmer asked to criticize this interface will complain that this
would consume too much memory if the file is very large. One of the principal
reasons for filehandles is that files can be so large and need to be represented in
programs in some way other than as a possibly enormous list of lines.

Another problem with the imaginary iterator-less version is the following
common pattern:

open(FILEHANDLE, 'filename');
while (<FILEHANDLE>) {
last if /Plutonium/;
}
close FILEHANDLE;
# do something with $_;

This code opens a file and reads through it looking for a record that contains
the word “Plutonium”. When it finds the record, it exits the loop immedi-
ately, closes the file, and then does something with the record it just extracted.
On average, it has to search only half of the file, because the plutonium will
typically be somewhere near the middle; it might even get lucky and find it
right at the beginning. In the worst case, the plutonium is at the end of the
file, or is missing entirely, and the program has to read the whole file to discover
that.

In the imaginary alternate universe with no filehandles, we get the worst case
every time:

# alternate universe interface
@lines = open('filename');
for (@lines) {

last if /Plutonium/;

}
# do something with $_;
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Even if the plutonium is at the beginning of the file, the alternate universe
open() still reads the entire file, a colossal waste of I/O and processor time.

Unix programmers, remembering that Perl’s open function can also open
a pipe to a command, will object even more strenuously:

@lines = open("yes |"); # alternate universe interface

Here Perl runs the Unix yes command and reads its output. But there’s a terrible
problem: the output of yes is infinite. The program will hang in an infinite
loop at this line until all memory is exhausted, and then it will drop dead.
The filehandle version works just fine.

4.1.2 Iterators Are Objects

The final advantage of an iterator over a plain array is that an iterator is an
object, which means it can be shared among functions.

Consider a program that opens and reads a Windows INI file. Here’s an
example of an INI file:

[Display]
model=Samsui

[Capabilities]
supports_3D=y

power_save=n

The file is divided into sections, each of which is headed by a title like
[Display] or [Capabilities]. Within each section are variable definitions such
as model=Samsui. model is the name of a configuration variable and Samsui is
its value.

A function to parse a single section of an INI file might look something

like this:

sub parse_section {
my $fh = shift;
my $title = parse_section_title($fh);
my %variables = parse_variables($fh);

return [$title, \%variables];
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The function gets a filehandle as its only argument. parse_section() passes
the filehandle to the parse_section_title() function, which reads the first line
and extracts and returns the title; then parse_section() passes the same file-
handle to parse_variables(), which reads the rest of the section and returns
a hash with the variable definitions. Unlike an array of lines, $fh keeps track
of the current position in the INI file, so that parse_section_title() and
parse_variables() don’t read the same data. Instead, parse_variables() picks
up wherever parse_section_title left off. The corresponding code with an
array wouldn't work:

sub parse_section {
my @lines = @_;
my $title = parse_section_title(@lines);
my %variables = parse_variables(@lines);

return [$title, \%variables];

There would be no way for parse_section_title() to remove the section title
line from @1ines. (This is a rather contrived example, but illustrates the possible
problem. Packaging up @lines as an object, even by doing something as simple
as passing \@lines instead, solves the problem.)

4.1.3  Other Common Examples of Iterators

Like all good, simple ideas, iterators pop up all over. If you remember only one
example, remember filehandles, because filehandles are ubiquitous. But Per] has
several other examples of built-in iterators. We'll take a quick tour of the most
important ones.

Dirhandles are analogous to filehandles. They are created with the opendir
function, and encapsulate a list of directory entries that can be read with the
readdir operator:

opendir D, "/tmp";
@entries = readdir D;

But readdir in scalar context functions as an iterator, reading one entry at a time
from D:

opendir D, "/tmp";
while (my $entry = readdir D) {
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# Do something with $entry

The built-in glob operator is similar, producing one file at a time whose name
matches a certain pattern:

while (my $file = glob("/tmp/*.[ch]™)) {
# Do something with $file

Perl hashes always have an iterator built in to iterate over the keys or values
in the hash. The keys and values functions produce lists of keys and values,
respectively. If the hash is very large, these lists will be large, so Perl also provides
a function to operate the iterator directly, namely each:

while (my $key = each %hash) {
# Do something with $key

Normally the Perl regex engine just checks to see if a string matches a pattern,
and reports true or false. However, it’s sometimes of interest what part of the
target string matched. In list context, the m//g operator produces a list of all
matching substrings:

@matches = ("12:34:56" =~ m/(\d+)/9);

Here @matches contains ("12", "34", "56"). In scalar context, m//g becomes
the NEXTVAL operation for an iterator inside the regex, producing a different
match each time:

while ("12:34:56" =~ m/(\d+)/g) {

# do something with $1

We will see this useful and little-known feature in more detail in Chapter 8.
Now we'll see how we can build our own iterators.

4.7 HOMEMADE ITERATORS

Our dir_walk(Q) function from Chapter 1 took a directory name and a call-
back function and searched the directory recursively, calling the callback for
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each file and directory under the original directory. Now let’s see if we can
structure dir_walk() as an iterator. If we did, then instead of searching the direc-
tory, dir_walk() would return an iterator object. This object would support a
NEXTVAL operation, which would return a different file or directory name each
time it was called.

First le’s make sure that doing this is actually worthwhile. Suppose we
had such an iterator. Could we still use it in callback style? Certainly. Suppose
make_iterator were a function that constructed an iterator that would return
the filenames from a directory tree. Then we would still be able to emulate the
original dir_walk() like this:

sub dir_walk {
my ($dir, $filefunc, $dirfunc, $user) = @_;
my $iterator = make_iterator($dir);
while (my $filename = NEXTVAL($iterator)) {
if (-f $filename) { $filefunc->($filename, $user) }

else { $dirfunc->($filename, S$user) }

Here I've written NEXTVAL($iterator) to represent the NEXTVAL operation. Since
we don’t know yet how the iterator is implemented, we don’t know what the real
syntax of the NEXTVAL operation will be.

This example shows that the iterator version is at least as powerful as the
original callback version. However, if we could build it, the iterator version
would have several advantages over the callback version. We would be able to
stop part way through processing the directory tree, and then pick up later where
we left off, and we would have a file-tree-walk object that we could pass around
from one function to another.

We'll use a really excellent trick to build our iterator: the iterator
will be a function. The NEXTVAL operation on the iterator will simply be
to call the function. When we call the iterator function it will do some
computing, figure out what the next filename is, and return it. This
means that the NEXTVAL($iterator) in our example code is actually doing
$iterator->Q).

The iterator will need to retain some state information inside it, but we've
already seen that Perl functions can do that. In Chapter 3, memoized functions
were able to retain the cache hash between calls.

Before we get into the details of the dir_walk() iterator, let’s try out the
idea on a simpler example.
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4.2.1 A Trivial Iterator: upto()

Here’s a function called upto() that builds iterators, and which is mostly useful as
an example. Given two numbers, 72 and 7, it returns an iterator that will return
all the numbers between 72 and 7, inclusive:

sub upto { CODE LIBRARY

my ($m, $n) = @_; upto
return sub {
return $m <= $n ? $m++ : undef;
1
}
my $it = upto(3, 5);

This constructs an iterator object that will count from 3 up to 5 if we ask it to.
The iterator object is just an anonymous subroutine that has captured the values
of $mand $n.

The iterator is a subroutine, returned by the final return sub { ... }
statement. Because the iterator is a subroutine, its NEXTVAL operation is sim-
ply invoking the subroutine. The subroutine runs and returns a value; this is
the next value from the iterator. To get the next value (“kick the iterator”) we
simply do:

my $nextval = $it->Q;

This stores the number 3 into $nextval. If we do it again, it stores 4. If we do
it a third time, it stores 5. Any calls after that will return undef.
To loop over the iterator’s values:

while (defined(my $val = $it->())) {
# now do something with $val, such as:
print "$val\n";

This prints 3, 4, 5, and then quits the loop.
This may have a substantial memory savings over something like:

for my $val (1 .. 10000000) {
# now do something with $val
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which, until Perl 5.005, would generate a gigantic list of numbers before starting
the iteration.

If you have a sweet tooth, you can put some syntactic sugar on your
serial:

CODE LIBRARY package Iterator_Utils;

Iterator_Utils.pm use base Exporter;
@EXPORT_OK = qw(NEXTVAL Iterator
append imap igrep
iterate_function filehandle_iterator list_iterator);
%EXPORT_TAGS = ('all' => \@EXPORT_OK);
sub NEXTVAL { $_[0]->(O) }

Then in place of the preceding examples, we can use this:
my $nextval = NEXTVAL($it);
and this:

while (defined(my $val = NEXTVAL($it))) {

# now do something with $val

We'll do this from now on.

The internal operation of the iterator is simple. When the subroutine is
called, it returns the value of $m and increments $m for next time. Eventually, $m
exceeds $n, and the subroutine returns an undefined value thereafter. When an
iterator runs out of data this way, we say it has been exbausted. We'll adopt the
convention that a call to an exhausted iterator returns an undefined value, and
then see some alternatives to this starting in Section 4.5.

SYNTACTIC SUGAR FOR MANUFACTURING
ITERATORS

From now on, instead of writing return sub { ... } in a function, we
will write return Iterator { ... } to make it clear that an iterator is being
constructed:

sub upto {

my ($m, $n) = @_;
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return Iterator {
return $m <= $n ? $m++ : undef;

};

This bit of sugar is easy to accomplish:
sub Iterator (&) { return $_[0] }
when we write this:
Iterator { ... }
Perl behaves as though we had written:
Iterator(sub { ... })

instead. Once past the sugar, the Iterator() function itself is trivial. Since the
iterator is the anonymous function, it returns the argument unchanged.

Using this Iterator() sugar may make the code a little easier to understand.
It will also give us an opportunity to hang additional semantics on iterator con-
struction if we want to, by adding features to the Iterator() function. We will
see an example of this in Section 4.5.7.

422 dir_walkQ

Now that we've seen a function that builds simple iterators, we can investigate a
more useful one, which builds iterators that walk a directory tree and generate
filenames one at a time:

# iterator version
sub dir_walk {
my @queue = shift;
return Iterator {
while (@queue) {
my $file = shift Gqueue;
if (-d $file) {
opendir my $dh, $file or next;
my @newfiles = grep {$_ne "." && $_ ne ".."} readdir $dh;
push @queue, map "$file/$_", @newfiles;

CODE LIBRARY

dir-walk-iterator
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}

return $file;
} else {
return;

The pattern here is the same as in upto(). dir_walk() is a function that sets up
some state variables for the iterator and then returns a closure that captures the
state variables. When the closure is executed, it computes and returns the next
filename, updating the state variables in the process.

The closure maintains a queue of the files and directories that it hasn’t yet
examined. Initially, the queue contains only the single top-level directory that
the user asked it to search. Each time the iterator is invoked, it removes the
item at the front of the queue. If this item is a plain file, the iterator returns it
immediately; if the item is a directory, the iterator reads the directory and queues
the directory’s contents before returning the name of the directory.

After enough calls to the iterator, the queue will become empty. Once this
happens, the iterator is exhausted, and further calls to the iterator will return
undef. In this case, undef doesn’t cause a semipredicate problem, because no
valid filename is ever undef.

There is one subtle point to make here. The items in @queue must be full
paths like . /src/per1/japh.p1, not basenames like japh.p1, or else the -d oper-
ator won't work. A common error when using -d is to get the basenames back
from readdir and test them with -d immediately. This doesn’t work, because
-d, like all file operators, interprets a bare filename as a request to look for that
name in the current directory. In order to use -d, we have to track the directory
names also.

The map function accomplishes this. When we read the filenames out of
the directory named $file with readdir, we get only the basenames. The map
appends the directory name to each basename before the result is put on the
queue. The result is full paths that work properly with -d.

Even if we didn’t need the full paths for use with -d, the user of the iterator
probably needs them. It’s not usually useful to be told that the program has
located a file named japh.p1 unless you also find out which directory it’s in.

4.2.3  On Clever Inspirations

Although this works well, it has one big defect: it appears to have
required cleverness. The original dir_walk() from Chapter 1 was reasonably
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straightforward: process the current file, and if it happens to be a directory, make
recursive calls to process its contents. The iterator version is not recursive; in
place of recursion, it maintains a queue.

The problem that the queue is solving is that a recursive function maintains
alot of state on Perl’s internal call stack. Here’s the recursive function dir_walk()
again:

sub dir_walk {
my ($top, $code) = @_;
my $DIR;
$code->($top);

if (-d $top) {
my $file;
unless (opendir $DIR, $top) {
warn "Couldn’t open directory $top: $!; skipping.\n";

return;

}

while ($file = readdir $DIR) {
next if $file eq '.'|| $file eq '
dir_walk("$top/$file", $code);

}

Each recursive call down in the while loop must save the values of $top, $code,
$DIR, and $file on the call stack; when dir_walk() is re-entered, new instances
of these variables are created. The values must be saved so that they can be
restored when the recursive call returns; at this time, the new instances are
destroyed.

When the dir_walk() function finally returns to its original caller, all of the
state information that was held in $top, $code, $DIR, and $file has been lost.
In order for the iterator to simulate a recursive function, it needs to be able to
return to its caller without losing all that state information.

Recursion is essentially an automatic stack-management feature. When our
function makes a recursive call, Perl takes care of saving the function’s state
information on its private, internal stack, and restoring it again as necessary.
But here the automatic management isn't what we want; we need manual control
over what is saved and restored, so recursion doesn’t work. Instead, we replace the
call stack with the @queue variable and do all our stack management manually,
with push and shift.
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interesting-files

}@__H
;!

5

}w i
}hi

(_h

w
o~
o
~

O —-0

FIGURE 4.I Depth-first traversal/breadth-first traversal.

The cost of the manual stack management is the trouble we have to go to.
But the payoff, as do-it-yourselfers know, is flexibility. A recursive function for
directory walking usually traverses the tree in depth-first order, visiting all the
contents of each directory before moving on to the next directory. Sometimes
we might prefer a breadth-first search, where all the files and directories at one
level of the tree are visited before those lower down. Figure 4.1 illustrates both
methods.

To get the recursive function to traverse the tree in breadth-first order or
in any order other than depth-first is very difficult. But the iterator version
accomplishes this easily. The previous iterator code traverses the directory in
breadth-first order. If we replace shift with pop, @queue behaves as a stack,
rather than a queue, and the iterator generates its output in depth-first order,
exactly as the original recursive function did.

Replacing the recursion with the queue seems like a clever inspiration, but
clever inspirations are usually in short supply. In Chapter 5, we'll see that any
recursive function can be turned into an iterator in a formulaic way, so that
we can save our clever inspirations for something else.

4.3 EXAMPLES

Let’s see some possibly useful examples of iterators. We'll start with a replacement
for File::Find, a variation on dir_walk(). It searches a directory hierarchy,
looking for possibly interesting files:

sub interesting_files {

my $is_interesting = shift;
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my @Qqueue = @_;
return Iterator {
while (@queue) {
my $file = shift Gqueue;
if (-d $file) {
opendir my $dh, $file or next;
my @newfiles = grep {$_ne "." && $_ ne ".."} readdir $dh;
push @queue, map "$file/$_", @newfiles;
}
return $file if $is_interesting->($file);
}

return;

};

Here we've made only a few changes. interesting_files() accepts a callback,
$is_interesting, which will return true if its argument is the name of an “inter-
esting” file. We'll also allow the user to specify more than one initial directory to
search. This is trivial: We just take all the given directory names and load them
into the initial queue.

The returned iterator is very similar. Instead of returning every file that it
finds in the queue, the iterator returns only if the file is interesting, as determined
by the callback. Otherwise, the iterator shifts another file off the queue and tries
again. If the queue is exhausted before an interesting file is found, control leaves
the while loop and the iterator returns undef. If the user calls the iterator again,
the queue is still empty, so the iterator returns undef immediately.

To use this, we might write:

# Files are deemed to be interesting if they mention octopuses
sub contains_octopuses {

my $file = shift;

return unless -T $file && open my($fh), "<", $file;

while (<$fh>) {

return 1 if /octopus/i;

}

return;
}
my $octopus_file =

interesting_files(\&contains_octopuses, 'uploads', 'downloads');

127



128 CHAPTER 4 lterators
Now that we have the iterator, we can find all the interesting files:

while ($file = NEXTVAL(S$octopus_file)) {
# do something with the file

Or perhaps we only want to know if there are any interesting files at all:

if (NEXTVAL($next_octopus)) {

# yes, there is an interesting file
} else {

# no, there isn’t.
}

undef $next_octopus;

With a recursive function, we might have had trouble stopping the function
when we found the interesting file; with the iterator, it’s trivial, since it only
searches as far as is necessary to find the first interesting file, and then leaves
the rest of the hierarchy unsearched and waiting in the queue. When we undef
$next_octopus, this saved state is discarded, and the memory used for storing it

is freed.

4.3.1 Permutations

A permutation is a rearrangement of the items in a list. A frequently asked ques-
tion in newsgroups is how to produce all the permutations of a certain list.
For example, the permutations of the list ('red', 'yellow', 'blue') are:

C ['red', 'yellow', 'blue'l,
['red', 'blue', 'yellow'],
['yellow', 'red', 'blue'l,
['yellow', 'blue', 'red'l],
['blue', 'red', 'yellow'],
['bTue', 'yellow', 'red'],

It’s not completely clear to me why this is useful. Last time it came up in the
newsgroup, I asked the poster, and he explained that he was trying to generate
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a name for a new product by assembling short phrases or syllables into different
orders. Regardless of whether this is a good idea, it does seem to be something
people want to do.

A beginner who tries to solve this problem may be completely puzzled.
A programmer with more experience will immediately try to write a recursive
function to generate the list, and will usually produce something that works.
For example, here’s the solution from the Perl Frequently Asked Questions List,
written by Tom Christiansen and Nathan Torkington:

sub permute {
my @items = @{ $_[0] };
my @perms = @{ $_[1] };
unless (@items) {
print "@perms\n";
} else {
my (@newitems,@newperms, $i);
foreach $i (0 .. $#items) {
@newitems = @items;
@newperms = @perms;
unshift(@newperms, splice(@newitems, $i, 1));

permute([@newitems], [@newperms]);

}
# sample call:
permute([qw(red yellow blue green)], [1);

Items are removed from @items and placed onto the end of @perms. When all
the items have been so placed, @items is empty and the resulting permutation,
which is in @perms, is printed. (We should probably replace the print with a
call to a callback.) The important part of this function is the else clause. In this
clause, the function removes one of the unused items from the @items array,
appends it to the end of the @perms array, and calls itself recursively to distribute
the remaining items.

This solution works, but has a glaring problem. If you pass in a list of ten
items, it doesn’t return until it has printed all 3,628,800 permutations. This is
likely to take a lot of time — twenty or thirty minutes on my computer. If we
modify the function to generate a list of permutations, it’s even worse. It returns
a list of 3,628,800 items, each of which is an array of 10 items. This is likely to
use up a substantial portion of your computer’s real memory; if it does, your OS
is likely to start thrashing while trying to compute the result, and it will take an
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permute

even longer time to finish. The function is inefficient to begin with, because it
performs six array copies per call, a total of 24,227,478 copies in our preceding
example above. The function is simply too slow to be practical except in trivial
cases. And since we probably cant use all of the 3.6 million permutations anyway,
most of the work is wasted.

This is the sort of problem that iterators were made to solve. We want to
generate a list of permutations, but the list might be enormous. Rather than
generating the entire list at once, as the FAQ solution does, we will use an
iterator that generates the permutations one at a time.

To make an iterator for permutations requires either an insight, or tech-
niques from later in the chapter. The insight-requiring version is interesting and
instructive, so we'll look at it briefly before we move into the more generally
useful versions that require less insight.

Regardless of the internals of permute (), here’s how we'll be using it:

my $it = permute('A'..'D");

while (my @ = NEXTVAL($it)) {
print "@p\n";

The function permute() constructs the iterator itself:

sub permute {

my @items = @_;

my @pattern = (0) x @items;

return Iterator {
return unless @pattern;
my @result = pattern_to_permutation(\@pattern, \@items);
@pattern = increment_pattern(@pattern);
return @result;

b

Each permutation is represented by a “pattern” that says in what order to select
elements from the original list. Suppose the original list is ('A", 'B', 'C’,
'D'). A pattern of 2 0 1 0 selects (and removes) item 2 from the original
list, the 'C', leaving ('A', 'B', 'D'); then item 0, 'A', from the remain-
ing items; then item 1, the 'D', then item 0, the 'B'; the result is the
permutation ('C', 'A', 'D', 'B'). This selection process is performed by
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pattern_to_permutation():

sub pattern_to_permutation {
my $pattern = shift;
my @items = @{shift(Q};
my @r;
for (@$pattern) {
push @r, splice(@items, $_, 1);
}
@r;
}

The generation of the patterns is the interesting part. What patterns make
sense? If there are four items in the original list, then the first element of the
pattern must be a number between 0 and 3, the second element must be a
number between 0 and 2, the third must be 0 or 1, and the last element must
be 0. Each pattern corresponds to a different permutation; if we can generate
all possible patterns, we can generate all possible permutations.

Generating all the patterns is performed by increment_pattern(). For this
example, it generates the following patterns in the following order:

0000 1100 2200
0010 1110 2210
0100 1200 3000
0110 1210 3010
0200 2000 3100
0210 2010 3110
1000 2100 3200
1010 2110 3210

What is the pattern here? It turns out that getting from one pattern to the next
is rather simple:

1. Scan the numbers in the pattern from right to left.

2. Ifyou can legally increment the current number, do so, and halt.

3. Otherwise, change the current number to 0 and continue.
4

If you fall off the left end, then the sequence was the last one.

This algorithm should sound familiar, because you learned it a long time ago.
It’s exactly the same as the algorithm you use to count:

210397
210398
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210399
210400
210401

To increment a numeral, scan the digits right to left. If you find a digit that you
can legally increment (that is, a digit that is less than 9) then increment it, and
stop; you are finished. Otherwise, change the digit to 0 and continue leftwards.
If you fall off the left end, it’s because every digit was 9, so that was the last
number. (You can now extend the number by inferring and incrementing an
unwritten 0 just past the left end.)

To count in base 2, the algorithm is again the same. Only the definition of
“legal digit” changes: instead of “less than 10” it is “less than 2”. To generate the
permutation patterns, the algorithm is the same, except that this time “legal”
means “the digit in the z#th column from the right may not exceed 7.”

The elements of the permutation pattern are like the wheels of an imaginary
odometer. But where each wheel on a real odometer is the same size, and carries
numbers from 0 to 9 (or 0 to 1 on planets where the odometer reads out in
base 2), each wheel in the permutation odometer is a different size. The last one
just hasa 0 on it; the next has justa 0 and a 1, and so on. But like a real odometer,
each wheel turns one notch when the wheel to its right has completed a whole
revolution.

The code to manage a regular odometer looks like this:

sub increment_odometer {
my @odometer = @_;

my $wheel = $#odometer; # start at rightmost wheel

until ($odometer[$wheel] < 9 || $wheel < 0) {
$odometer[$wheel] = 0;

$wheel--; # next wheel to the left
3
if ($wheel < 0) {

return; # fell off the left end; no more sequences
} else {

$odometer[$wheel]++; # this wheel now turns one notch

return @odometer;



4.3 EXAMPLES 133

The code to produce the permutation patterns is almost exactly the same:

sub increment_pattern {
my @odometer = @_;

my $wheel = $#odometer; # start at rightmost wheel

until ($odometer[$wheel] < $#odometer-$wheel || $wheel < 0) {
$odometer[$wheel] = 0;

$wheel--; # next wheel to the Teft
}
if ($wheel < 0) {

return; # fell off the left end; no more sequences
} else {

$odometer[$wheel]++; # this wheel now turns one notch
return @odometer;

We can simplify the code with a little mathematical trickery. Just as we can
predict in advance what positions the wheels of an odometer will hold after
we've travelled 19,683 miles, even if it reads out in base 2, we can predict what

positions the wheels of our pattern-odometer will hold the 19,683rd time we
call it:

sub n_to_pat { CODE LIBRARY

my @odometer; permute-n
my ($n, $length) = @_;
for my $i (1 .. $length) {
unshift @odometer, $n % $i;
$n = int($n/$1);
}

return $n ? () : @odometer;

permute() must change a little to match, since the state information is now
a simple counter instead of an entire pattern:

sub permute {
my @items = @_;
my $n = 0;
return Iterator {
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permute-flop

my @pattern = n_to_pat($n, scalar(@items));
my @result = pattern_to_permutation(\@pattern, \@items);
$n++;

return @result;

This last function is an example of a useful class of iterators that return

£(0),£(1),f(2),... for some function f:

sub iterate_function {
my $n = 0;
my $f = shift;
return Iterator {
return $f->($n++);

b

This is an iterator that generates values of a function for » = 0,1,2.... You
might want many values of the function, or few; an iterator may be a more
flexible way to get them than a simple loop, because it is a data structure.

The permutation iterators shown here do a lot of splicing. pattern_to_
permutation() copies the original list of items and then dismantles it; every time
an element is removed the other elements must be shifted down in memory to
fill up the gap. With enough ingenuity, it’s possible to avoid this, abandoning
the idea of the patterns. Instead of starting over with a fresh list every time, in
the original order, and then using the pattern to select items from it to make the
new permutation, we can take the previous permutation and just apply whatever
transformation is appropriate to turn it into the new one:

sub permute {
my @items = @_;
my $n = 0;
return Iterator {

$n++, return @items if $n==0;

my $i;

my $p = $n;

for ($i=1; $i<=@items && $p%$i==0; $i++) {
$p /= $1;

}

my $d = $p % $1i;
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my $j = @items - $i;
return if $j < 0;

@items[$j+1..%#items] = reverse @items[$j+1..%$#items];
@items[$],$j+%d] = @items[$j+%d,$j];

$n++;
return @items;

b

The key piece of code here is the pair of slice assignments of @i tems. The insight
behind this code is that at any given stage, we can ignore the first few items
and concentrate only on the last few. Let’s say we're rearranging just the last
three items. We start with something like ... A B C D and produce the various
rearrangements of the last three items, ending with ... A D C B.

At this point, the last three items are in backwards order. We need to put
them back in forward order (this is the assignment with the reverse) and then
switch the A, the next item over, with one of the three we just finished permuting.
(This is the second assignment.) We need to do this three times, first switching A
with B, then with C, and finally with D; after each switch, we run again through all
possible permutations of the last three items. Of course, there are complications,
since permuting the last three items involves applying the same process to the
last fwo items, and is itself part of the process of permuting the last four items.

4.3.2  Genomic Sequence Generator

In 1999, I got email from a biologist at the University of Virginia. He was working
on the Human Genome Project, dealing with DNA. DNA is organized as a
sequence of base pairs, each of which is typically represented by the letter A, ¢, G,
or T. The information carried in the chromosome of any organism can be recorded
as a string of these four letters. A bacteriophage will have a few thousand of these
symbols, and a human chromosome will have between 30 and 300 million.
Much of the Human Genome Project involved data munging on these strings;
Perl was invaluable for this munging. (For more details about this, see Lincoln
Stein’s widely-reprinted article “How Perl Saved the Human Genome Project.”")

The biologist who wrote to me wanted a function that, given an input
pattern like "A(CGT)CGT", would produce the output list ('ACCGT', 'AGCGT',
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'ATCGT"). The (CGT) in the input is a wildcard that indicates that the second

position may be filled by any one of the symbols C, G, or T. Similarly, an input

of "A(CT)G(AQ)" should yield the list ("ACGA", 'ATGA', 'ACGC', 'ATGC'). He

had written a recursive function to generate the appropriate output list, but was

concerned that he would run into memory limitations if he used it on long,

ambiguous inputs, where the result would be a list of many thousands of strings.
An iterator is exactly the right solution here:

CODE LIBRARY sub make_genes {

make-genes-1 my $pat - Sh‘ift;
my @tokens = split /[(Q1/, $pat;
for (my $i = 1; $i < @tokens; $i += 2) {
$tokens[$i] = [0, split(//, $tokens[$i1)];
}
my $FINISHED = O0;
return Iterator {
return if $FINISHED;
my $finished_incrementing = 0;
my $result = "";
for my $token (@tokens) {
if (ref $token eq "") { # plain string
$result .= $token;
} else { # wildcard
my ($n, @c) = @$token;
$result .= $c[$n];
unless ($finished_incrementing) {
if ($n == $#c) { $token->[0] = 0 }
else { $token->[0]++; $finished_incrementing = 1 }

}
$FINISHED = 1 unless $finished_incrementing;

return $result;

Here the input pattern "AA(CGT)CG(AT)" is represented by the following data
structure, which is stored in @tokens:

[ "AA",
[0, "c", "G", "T"1,
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e,
[0, "A", "T"],

The code to construct the data structure uses some tricks:

my @tokens = split /[(Q]1/, $pat;
for (my $i = 1; $i < @tokens; $i += 2) {
$tokens[$i] = [0,split(//, $tokens[$i])];

The peculiar-looking sp1it pattern says that $pat should be split wherever there
is an open- or a close- parenthesis character. The return value has the convenient
property that the wildcard sections are always in the odd-numbered positions
in the resulting list. For example, "AA(CGT)CG(AT)" is split into ("AA", "CGT",
"CG", "AT"). Even if the string begins with a delimiter, sp1it will insert an
empty string into the initial position of the result: "(A)C" is split into (",
AT, MO,

The following code processes only the wildcard parts of the resulting @tokens
list:

for (my $i = 1; $i < @tokens; $i += 2) {
$tokens[$i] = [0,split(//, $tokens[$i1)];

The odd-numbered elements of ("AA"™, "CGT", "CG", "AT") are transformed
by this into ("AA", [ 0, "C", "G", "T"1, "CG", [ 0, "A", "T"1). The iter-
ator then captures this list, which is stored in @tokens. Elements of this list
that are plain strings correspond to the non-wildcard parts of the input pat-
tern, and are inserted into the output verbatim. Elements that are arrays
correspond to the wildcard parts of the input pattern and indicate choice
points.

The internal structure of the iterator is similar to the structure of the per-
mutation generator. When it’s run, it scans the token string, one token at a time.
During the scan, it does two things: It accumulates an output string, and it
adjusts the numeric parts of the wildcard tokens. Tokens are handled differently
depending on whether they are plain strings (ref $token eq "") or wildcards.
Plain strings are just copied directly to the result.

Wildcard handling is a little more interesting. The wildcard token is first
decomposed into its component parts:

my ($n, @c) = @$token;
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$n says which element of @c should be chosen next:
$result .= $c[$n];

Then the iterator may need to adjust $n to have a different value so that a
different element of @c will be chosen next time. In the permutation-pattern
generator, we scanned from right to left, resetting wheels to zero until we found
one small enough to be incremented. Here we're scanning from left to right, but
the principle is the same. $finished_incrementing is a flag that tells the iterator
whether it has been able to increment one of the digits, after which it doesnt
need to adjust any of the others:

unless ($finished_incrementing) {
if ($n == $#c) { $token->[0] =0 }
else { $token->[0]++; $finished_incrementing = 1 }

The function can increment the value in a wildcard token if it would still index
a valid element of @c afterwards. Otherwise, the value is reset to zero and the iter-
ator keeps looking. This is analogous to the way we used increment_pattern()
earlier to cycle through all possible permutation patterns; here we use the
same sort of odometer technique to cycle through all possible selections of the
wildcards.

When we have cycled through all the possible choices, the numbers in the
wildcard tokens all have their maximum possible values; we can recognize this
condition because we will have scanned all of them without finding one we
could increment, and so $finished_incrementing will still be false after the
scan. The iterator sets the $FINISHED flag so that it doesn’t start over again from
the beginning; thereafter, the iterator returns immediately, without generating
a string:

$FINISHED = 1 unless $finished_incrementing;

There’s nothing in this iterator that treats A, C, T, and G specially, so we can use
it as a generic string generator:

my $it = make_genes('(abc)(de)-(12)");
print "$s\n" while $s = NEXTVAL($it);

The output looks like this:

ad-1
bd-1



cd-1
ae-1
be-1
ce-1
ad-2
bd-2
cd-2
ae-2
be-2

ce-2
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Biologists don’t usually use (ACT) to indicate a choice of A, C, or T; they typically
use the single letter H. I dont know if the biologist who asked me this question
was trying to avoid confusing me with unnecessary detail, or if he really did want
to handle patterns like (ACT). But supposing that we want to handle the standard
abbreviations, a simple preprocessor will take care of it:

4.3.3

%n_expand = qw(N ACGT
B CGT D AGT H ACT V ACG
K GT M ACR AG S CGWATYCT;
sub make_dna_sequences {
my $pat = shift;
for my $abbrev (keys %n_expand) {
$pat =~ s/$abbrev/($n_expand{$abbrev})/g;
}

return make_genes($pat);

Filehandle Iterators

CODE LIBRARY

make-genes-2

Now we'll see how to turn an ordinary Perl filehandle into a synthetic closure-
based iterator. Why would we want to this? Because in the rest of the chapter
we'll develop many tools for composing and manipulating iterators, and these
tools apply just as well to Perl filehandles as long as we use the following little

wrapper:

sub filehandle_iterator {
my $fh = shift;
return Iterator { <$th> };
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We can now use:

my $it = filehandle_iterator(*STDIN);
while (defined(my $1ine = NEXTVAL($it))) {
# do something with $T1ine

4.3.4 A Flat-File Database

Now let’s do a real application. We'll develop a small flat-file database. A flaz-file
database is one that stores the data in a plain text file, with one record per line.
Our database will have a format something like this:

LASTNAME : FIRSTNAME : CITY: STATE : OWES
db. txt Adler:David:New York:NY:157.00

Ashton:ETaine:Boston:MA:0.00
Dominus:Mark:Philadelphia:PA:0.00
Orwant:Jon:Cambridge:MA:26.30
Schwern:Michael:New York:NY:149658.23
Wall:Larry:Mountain View:CA:-372.14

The first line is a header, sometimes called a schema, that defines the names of
the fields; the later lines are data records. Each record has the same number of
data fields, separated by colons. This sample of the data shows only six records,
but the file might contain thousands of records. For large files, the iterator
approach is especially important. A flat-file database must be searched entirely
for every query, and this is slow. By using an iterator approach, we will allow
programs to produce useful results before the entire file has been scanned.

We'll develop the database as an object-oriented class, F1atDB. The F1atDB
class will support a new method that takes a data filename and returns a database

handle object:

package Flatos;

FlatDB.pm

my $FIELDSEP = qr/:/;

sub new {
my $class = shift;
my $file = shift;
open my $fth, "<", $file or return;
chomp(my $schema = <$fth>);
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my @field = split $FIELDSEP, $schema;

my %fieldnum = map { uc $field[$_] => $_ } (0..$#field);

bless { FH => $fh, FIELDS => \@field, FIELDNUM => \%fieldnum,
FIELDSEP => $FIELDSEP } => $class;

The database handle object contains a number of items that might be useful, in
addition to the open data filehandle itself. For our sample database, the contents

of the database handle object look like this:

FH => (the handle),
FIELDS => ['LASTNAME', 'FIRSTNAME', 'CITY', 'STATE', 'OWES'],
FIELDNUM => { CITY => 2,

FIRSTNAME => 1,

LASTNAME => 0,

OWES => 4,

STATE => 3,

1,

FIELDSEP => qr/:/,

The database handle object will support a query method that takes a field name
and a value and returns all the records that have the specified value in the field.
But we don’t want query to simply read all the records in the data file and return
a list of matching records, because that might be very expensive. Instead, query
will return an iterator that will return matching records one at a time:

# usage: $dbh->query(fieldname, value)
# returns all records for which (fieldname) matches (value)
use Fcntl ':seek';
sub query {
my $self = shift;
my ($field, $value) = @_;
my $fieldnum = $self->{FIELDNUM}{uc $field};
return unless defined $fieldnum;
my $fh = $self->{FH};
seek $fh, 0, SEEK_SET;
<$th>; # discard schema 1ine

return Iterator {
Jocal $_;
while (<$fh>) {
chomp;
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my @fields = split $self->{FIELDSEP}, $_, -1;
my $fieldval = $fields[$fieldnum];
return $_ if $fieldval eq $value;

}

return;

1

query first looks in the FIELDNUM hash to ascertain two things. First, is the
requested field name actually a field in the database, and second, if so, what
number column is it? The result is stored in $fieldnum; if the field name is
invalid, query returns undef to indicate an error. Otherwise, the function seeks
the filehandle back to the beginning of the data to begin the search, using the
seek function.

seek() has a rather strange interface, inherited from the original design of
Unix in the 1970s: seek($fh, $position, $whence) positions the filehandle so
that the next read or write will occur at byte position $position. The $whence
argument is actually the integer 0, 1, or 2, but mnemonic names for these
values are provided by the standard Per]l Fent1 module. If $whence is the con-
stant SEEK_SET, $position is interpreted as a number of bytes forward from the
beginning of the file. Here we use seek($fh, 0, SEEK_SET), which positions the
handle at the beginning of the file, so that the following <$fh> reads and discards
the schema line.

The query function then returns the iterator, which captures the values of
$self, $fh, $fieldnum, and $value.

The iterator is quite simple. When it’s invoked, it starts reading data lines
from the database. It splits up each record into fields, and compares the appro-
priate field value (in $fields[$fieldnum]) with the desired value (in $value).
If there’s a match, it returns the current record immediately; if not, it tries the
next record. When it reaches the end of the file, the while loop exits and the
function returns an undefined result to indicate failure.

The iterator is planning to change the value of $_ in the while loop. Since
$_ is a global variable, this means that the function calling the iterator might get
a nasty surprise:

$_ = "'I Tove you';
NEXTVAL ($Q) ;
print $_;

We don’t want the invocation of $q to change the value of $_. To prevent this, the
iterator uses Tocal $_. This saves the old value of $_ on entry to the iterator, and
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arranges for the old value to be automatically restored when the iterator returns.
With this Tocal line, it is safe for the iterator to use $_ any way it wants to.
You should probably take this precaution in any function that uses $_.

A simple demonstration:

use FlatDB;
my $dbh = FlatDB->new('db.txt') or die $!;

my $q = $dbh->query('STATE', 'NY');
while (my $rec = NEXTVAL($q)) {
print $rec;

The output is:

AdTler:David:New York:NY:157.00
Schwern:Michael:New York:NY:149658.23

Many obvious variations are possible. We might support different kinds of
queries, which return a list of the fields, or a list of just some of the fields.
Or instead of passing a field—value pair, we might pass a callback function that

will be called with each record and returns true if the record is interesting:

use FlatDB;
my $dbh = FlatDB->new('db.txt') or die $!;

my $q = $dbh->callbackquery(sub { my %F=@_; $F{STATE} eq 'NY'});
while (my $rec = NEXTVAL($q)) {
print $rec;

# Output as before

With callbackquery we can ask for a list of the people who owe more than $10,
which was impossible with ->query:

my $q = $dbh->callbackquery(sub { my %F=@_; $F{OWES} > 10 });
Similarly, we can now use Perl’s full regex capabilities in queries:

my $q = $dbh->callbackquery(sub { my %F=@_; $F{FIRSTNAME} =~ /"M/ });
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This callback approach is much more flexible than hardwiring every possible
comparison type into the iterator code, and it’s easy to support:

use Fcntl ':seek';
sub callbackquery {
my $self = shift;
my $is_interesting = shift;
my $fh = $self->{FH};
seek $th, 0, SEEK_SET;
<$fh>; # discard header Tline

return Iterator {

Tocal $_;

while (<$fh>) {
chomp;
my %F;
my @fieldnames = @{$self->{FIELDS}};
my @fields = split $self->{FIELDSEP};
for (0 .. $#fieldnames) {

$F{$fieldnames[$_]1} = $fields[$_];

}
return $_ if $is_interesting->(%F);
}
return;
}
}

The only major change here is in the iterator itself, mostly to set up the %F
hash that is passed to the callback. I originally had a hash slice assignment
instead of the for loop:

@F{@{$self->{FIELDS}}} = split $self->{FIELDSEP};

The punctuation made my eyes glaze over, so I used the loop instead.

IMPROVED DATABASE

The database code we've just seen has one terrible drawback: All of the iterators
share a single filehandle, and this means that only one iterator can be active at
any time. Consider this example:

use FlatDB;
my $dbh = FlatDB->new('db.txt') or die $!;
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my $ql1 = $dbh->query('STATE', 'MA');
my $q2 = $dbh->query('STATE', 'NY');
for (1..2) {

print NEXTVAL($ql), NEXTVAL($q2);

Wed like this to print both NY records and both MA records, but it doesn’s; it
produces only one of each:

Ashton:Elaine:Boston:MA:0.00
Schwern:Michael:New York:NY:149658.23

What goes wrong? We would like $q1 to generate records 2 and 4, and $q2
to generate records 1 and 5. The sequence of events is shown in Figure 4.2.
$q1 executes the first time, and searches through the database looking for an
MA record. In doing so, it skips over record 1 (David Adler) and then locates
record 2 (Elaine Ashton), which it returns. The filehandle is now positioned at
the beginning of the third record. When we invoke $q2, this is where the search
continues. $q2 won't find record 1, because the handle is already positioned
past record 1. Instead, the iterator skips the next two records, until it finds
record 5 (Michael Schwern), which it returns. The filehandle is now positioned
just before record 6 (Larry Wall). When $q1 executes the second time, it skips
record 6, reaches the end of the file, and returns undef. All further calls to both
iterators produce nothing but undef because the filehandle is stuck at the end of
the file. Although some commercial databases (such as Sybase) have this same
deficiency, we can do better, and we will.

The obvious solution is to have a separate filehandle for each iterator. But
open filehandles are a limited resource, and a program might have many active
iterators at any time, so we'll adopt a different solution. Each iterator will
remember the position in the file at which its last search left off, and when
it is invoked, it will reset the handle to that position and continue. This allows
several iterators to share the same filehandle without getting confused.

We need to make only a few changes to query to support this:

# usage: $dbh->query(fieldname, value)
# returns all records for which (fieldname) matches (value)

use Fcntl ':seek';
sub query {
my $self = shift;
my ($field, $value) = @_;

my $fieldnum = $self->{FIELDNUM}{uc $field};
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HEADER
1 Adler NY
2 Ashton MA

3 Dominus PA
4 Orwant MA
5 Schwern NY

6 Wall

CA

| $ql I (state = MA)

HEADER

1 Adler NY
2 Ashton MA
3 Dominus PA
4 Orwant MA
5 Schwern NY

6 Wall

CA

HEADER

1 Adler NY
2 Ashton MA
3 Dominus PA
4 Orwant MA
5 Schwern NY

6 Wall CA (state = NY)
NEXTVAL ($q1) = undef
HEADER (state = MA)
1 Adler NY
2 Ashton MA
3 Dominus PA
4 Orwant MA
5 Schwern NY
6 Wall CA (state = NY)
NEXTVAL ($q2) = undef
HEADER $ql| (state = MA)
1 Adler NY i
2 Ashton MA

3 Dominus PA
4 Orwant MA
5 Schwern NY

6 Wall

CA

$q2 | (state = NY)

NEXTVAL ($G1) = undef

FIGURE 4.2 Interference between two query handles.



return unless defined $fieldnum;

my $fh = $self->{FH};

seek $th, 0, SEEK_SET;

<$th>; # discard header line
my $position = tell $fh;

return Iterator {

local $_;

seek $fh, $position, SEEK_SET;

while (<$fh>) {
chomp;
$position = tell $fh;
my @fields = split $self->{FIELDSEP};
my $fieldval = $fields[$fieldnum];
return $_ if $fieldval eq $value;

}

return;

};

# callbackquery with bug fix
use Fcntl ':seek';
sub callbackquery {

my $self = shift;

my $is_interesting = shift;

my $fh = $self->{FH};

seek $fh, 0, SEEK_SET;

<$th>; # discard header 1line

my $position = tell $fh;

return Iterator {
local $_;
seek $fh, $position, SEEK_SET;
while (<$fh>) {
$position = tell $fh;
my %F;
my @fieldnames = @{$self->{FIELDS}};
my @fields = split $self->{FIELDSEP};
for (0 .. $#fieldnames) {
$F{$fieldnames[$_1} = $fields[$_];
}

return $_ if $is_interesting->(%F);
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}

return;

};

1;

The iterators here capture one additional value, $position, which records the
current position of the filehandle in the file; initially this position is at the start
of the first data record. This position is supplied by the Perl tel1 operator,
which returns the filehandle’s current position; if this position is later used with
seek $fh, $position, SEEK_SET, the filehandle will be set back to that position.
This is precisely what the iterators do whenever they are invoked. Regardless of
what other functions have used the filehandle in the meantime, or where they
have left it, the first thing the iterators do is to seek the filehandle back to the
current position using the seek operator. Each time an iterator reads a record,
it updates its notion of the current position, again using tell, so its seek in a
future invocation will skip the record that was just read.
With this change, our two-iterators-at-once example works perfectly:

Ashton:ETaine:Boston:MA:0.00
Adler:David:New York:NY:157.00
Orwant:Jon:Cambridge:MA:26.30
Schwern:Michael:New York:NY:149658.23

4.