

-C-SE=2021) -C-SE=2021

$H \cup G H = C H E S S E R$ 1 A S = 1012 U

2 10 1	10	ĸ	ĩ	0	8	_
11 12	Ŵ	E E	61 B	Ť		Ŧ
	E Ø		L D	0 00	M	A
1 1 I	T	I	ca. cc	D	U N	0
田 1	15 18	字印	美と	いい	社明	F
ten At :		>	9	1-10	7 =	1
	H	đi na		>	101	4
	A T		ΗE			-
31, 94	致愚	28	田のい	す国	び技	E[1
R P	Ī	ê O	8		H	3
T R	E Ť	T E	A	I A	\$ 0	H F
男と 字印	11 M	崩	+ +	なっ	文類	Ø
	*	B	*	EC	5P	8/-
1 H H H	I	I T	52	切す	市町万町で	の日日
S S Y	E I		E B		GTZ	M I A N
			に美し	X T	た社	なフ
	jų p	1× TRE	5	RE	0	8
	A G	N	0			
-W]-4	8 📩	モレガ	印	ρĘ ε	e.	計開
V	N M	0 U	S O	N.	H H	TW
	技す	印 び	と 字	に美	H w	上村

Agenda

- Introduction to course
- Context
 - Hardware Integrated Circuits (IC's)
 - Software Assembly Language

Reading: Patterson, Sections 1.1 - 1.3.

CSE 2021: Computer Organization Section E

Course URL:	https://wiki.cse.yorku.ca/course_archive/2012-13/F/2021/				
Text:	D. A. Patterson and J. L. Hennessey, Computer Organization and Design, San Francisco, CA: Morgan Kaufmann Publishers, Inc., 4 th edition (2009)				
Class Schedule:	MW 17:30 – 19:00, LAS B				
Office Hours:	Instructor: LAS 1012U, T, R 10 – 12 or by appointment Teaching Assistants: Mohammad Sajjadieh, Hong Ming Huai				
Laboratory:	LAS 1006				

Laboratory:LAS 1000Lab Schedule:Lab 01 M, Lab 02 T, 19:00 – 22:00 – NOT every week – see course
calendarLab Tools:SPIM (QtSpim), Icarus Verilog, Crimson editor – all may be
downloaded for free - see course web site for links to download

Assessment: Quizzes: 12% (3 Quizzes @4% each) Lab Exercises: 32% (8 Labs A-D, K-N @4% each) Mid-term Exam: 20% Final Exam: 36%

Rough Course Schedule

Two halves to the course: Software Hardware

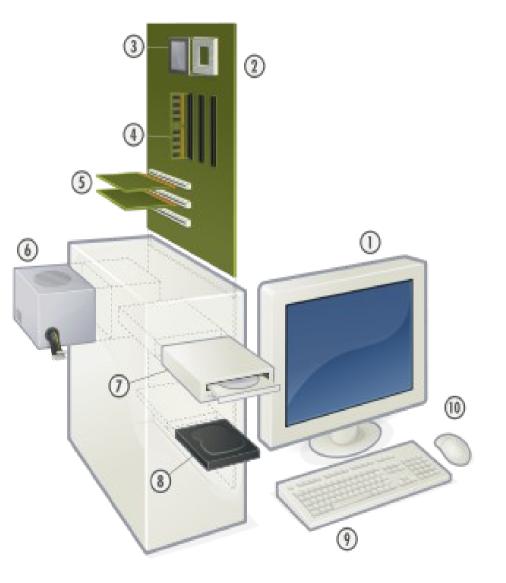
WEEK #	WEEK OF	Mon	Wed	Lab	Approximate Lecture Schedule
1	Sep 03	-		-	Overview of the course
2	Sep 10			-	Performance and Data Translation
3	Sep 17			А	Code Translation
4	Sep 24		Quiz #1	В	Translating Utility Classes
5	Oct 01			С	Translating Objects
6	Oct 08	_1)	Mid-term ²⁾	-	-
7	Oct 15			D	Introduction to Hardware
8	Oct 22			Make-up Labs	Machine Language + Floating-Point
9	Oct 29		_3)	К	The CPU Datapath
10	Nov 05		Quiz #2	L	The Single-Cycle Control
11	Nov 12			М	Pipelining
12	Nov 19			N	Caches
13	Nov 26		Quiz #3	Make-up Labs	
14	Dec 03		-	-	No lecture on Wednesday
Exam Period	Dec 5 - 21	-	-	-	There will be a final exam held during the exam period - TBA.

1) Oct 8 - No class - Thanksgiving

2) Mid-term is Wed Oct 10 in LAS B.

3) Co-curricular days - Oct. 31 - Nov. 4

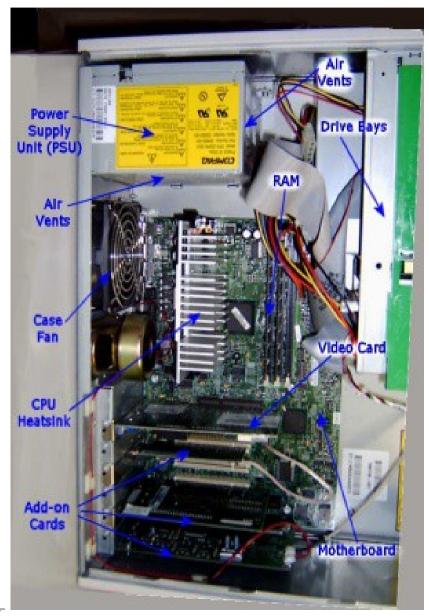
Labs


- Ensure you have a CSE account!
- M, T 19:00 22:00 LAS 1006
- Each lab contains useful practice exercises that are to be submitted (see Lab A instructions for details)
- At around 20:30 a lab exercise will be given to each student to be completed INDEPENDENTLY and submitted within 75 minutes. Only aids are the submitted practice material.
- More details next week

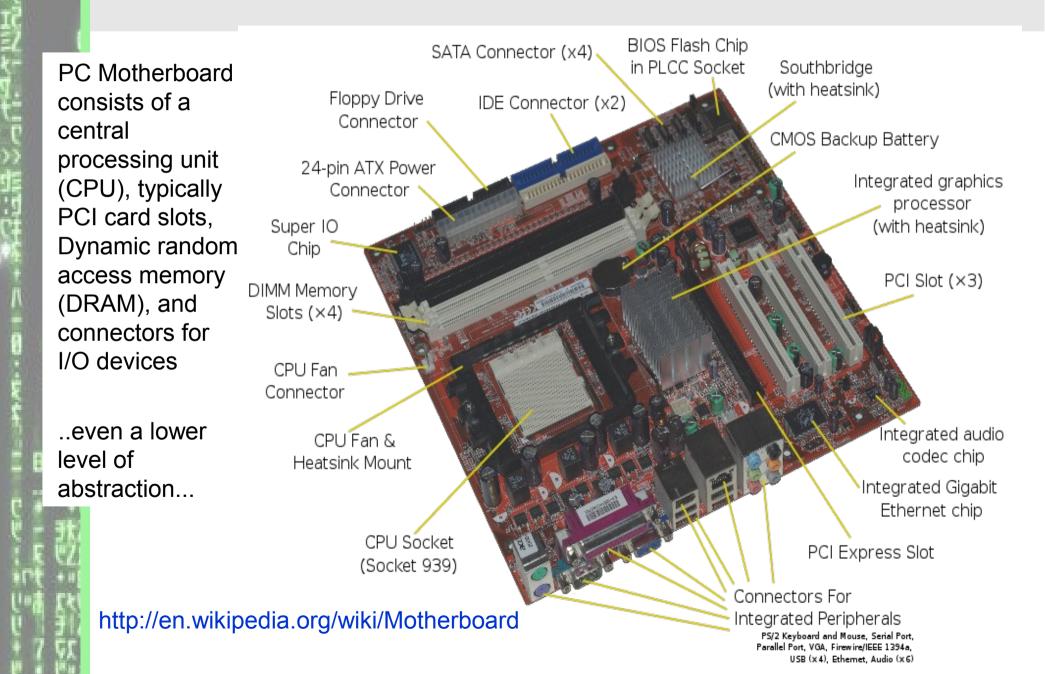
Computer Hardware Architecture – High Level

Hardware Elements: Computer, Monitor, Keyboard, Mouse, Network, ...

The components and how they interconnect can be said to constitute a level of abstraction


Our course will deal with a lower level of abstraction of the computer than shown here

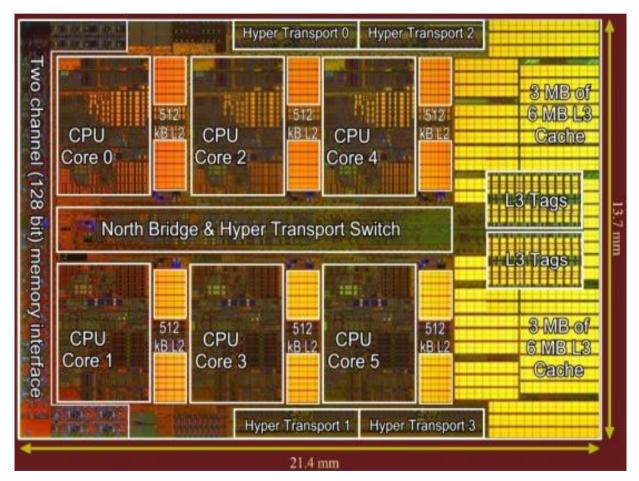
Inside a PC – High Level Computer Architecture


PC consists of a motherboard (CPU, onboard memory, i/o devices), hard disk, floppy drives, power supply, and connectors.

...again we'll be talking about a lower level of abstraction in the course...

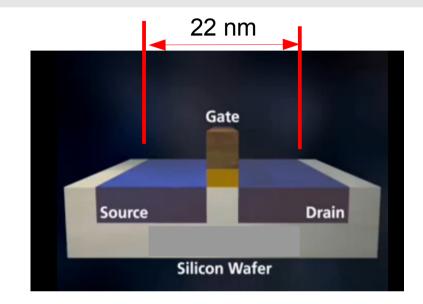
wl-w

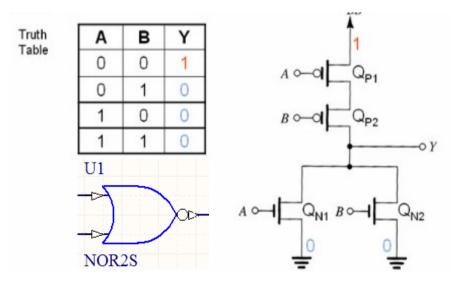
Inside a PC: Motherboard


Inside a PC: CPU

CPU comprises of two main components:

1. Datapath: consists of Data and instruction cache, Bus, and integer and floating point data path. The latter performs integer and floating point arithmetic operations

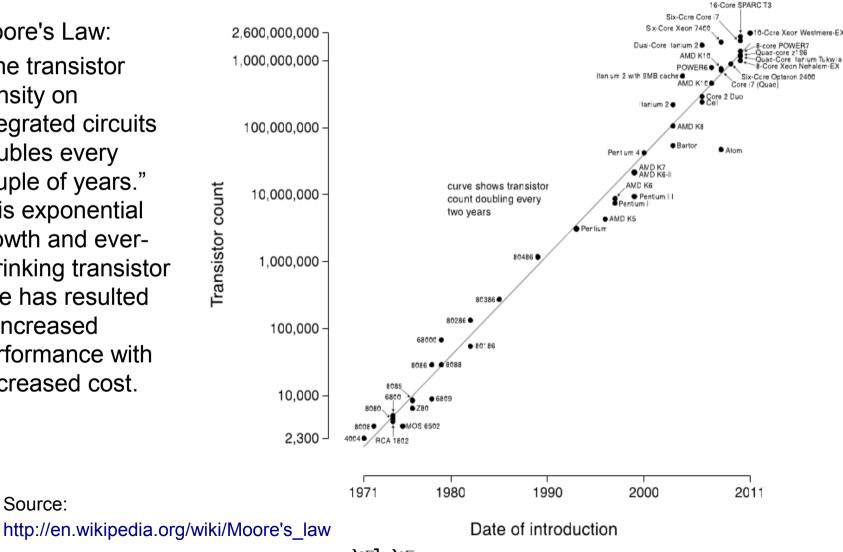

2. Control: tells the datapath memory and I/O devices what to do based on the program


٣ŗ

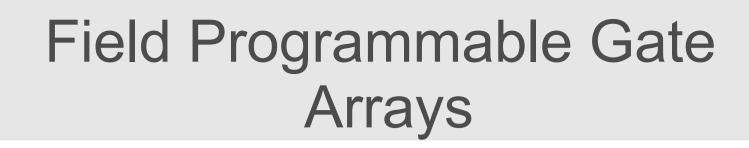
FET Transistor

- Basic element of any digital circuit
- Logic gates (and, or, not, etc) are made from FETs
- Memory locations
- Our course deals with hardware at a higher level of abstraction – gates vs. transistors

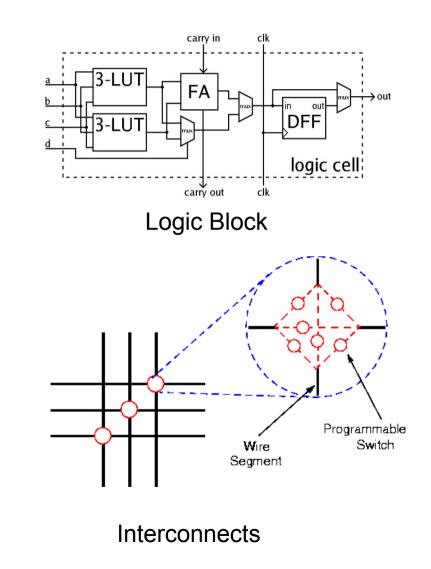
Source: http://www.youtube.com/watch?v=J8ZPIDNaijs&list=PL46840EB0E725FB91&index=1&feature=plpp


Innovation (2)

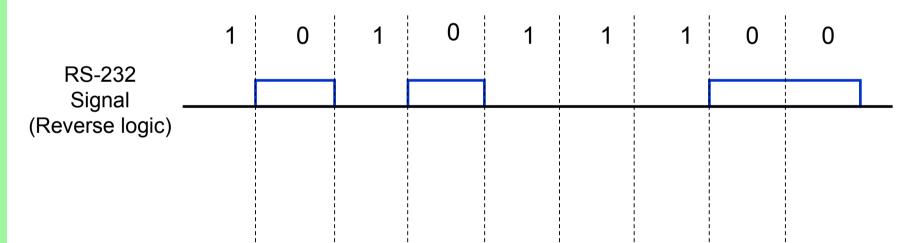
Microprocessor Transistor Counts 1971-2011 & Moore's Law


Moore's Law: "The transistor density on integrated circuits doubles every couple of years." This exponential growth and evershrinking transistor size has resulted in increased performance with decreased cost.

Source:


٦.

-w1-w



- We will be learning "Verilog" to describe the behaviour of a desired logic circuit – an example of a Hardware Description Language (HDL)
- Technology behind "Soft processing" and "System on a Chip" (SOC)
- A type of Integrated Circuit that the user can configure or define
- Subtly different than traditional programming more on this later

Binary Digits (Bits)

- Communication between different components of a computer takes place in terms of *on* and *off* electrical signals
- Symbols used to represent these electrical states are the numbers 1 and 0; binary digit 1 corresponding to high voltage and binary digit 0 corresponding to low voltage

 All operations and data inside a computer are expressed in terms of the binary digits or bits

Instructions

- Instructions: are commands given to a computer to perform a particular task. Example: Addition of variables A and B High Level Language: (A + B) Binary notation for the add operation: 100011001010000
- Binary machine language program: is a one-to-one binary representation of a program written in a high level language.
- Clearly, binary machine language programs are tedious to write and debug.
- Instead a symbolic notation is used as an intermediate step between the high level language and its binary representation. This symbolic notation is referred to as the assembly language.

Example: Addition of variables A and E	3
High Level Language:	(A + B)
Assembly Language:	add A,B
Binary notation for the add operation:	100011001010000

Levels of Programming

High-level

language

Assembly

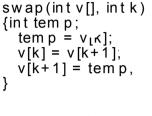
language

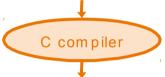
(for MIPS)

program

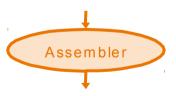
program

(in C)

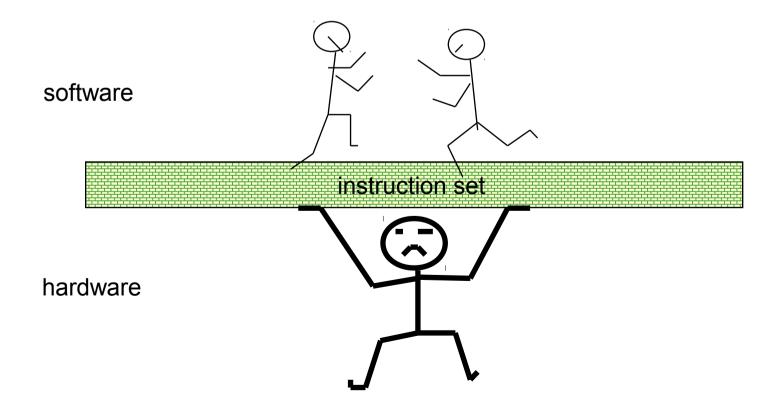

Why use High-level Language?


- 1. Ease in writing & debugging
- 2. Improved productivity
- 3. HW independence

Compiler: converts a program written in high-level language into its equivalent symbolic assembly language representation.


Assembler: translates assembly language into the binary machine language.

Binary machine language program (for MIPS)



swap: muli \$2, \$5,4 add \$2, \$4,\$2 lw \$15, 0(\$2) lw \$16, 4(\$2) sw \$16, 0(\$2) sw \$15, 4(\$2) jr \$31

Instruction Set (1)

- Computer Architecture = Instruction Set Architecture + Machine Organization
- Machine Organization: Ways in which different computer components (Registers, ALU, Shifters, Logic Units, ...) are interconnected.
- Recall instructions are commands given to a computer to perform a particular task.
- Instruction Set: is a collection / library of instructions that a computer can execute.

Instruction Set (2)

- Programs written for a computer can only use the instructions provided in its instruction set.
- Examples of modern instruction set architectures (ISA's):
 - 1. 80x86/Pentium/K6/MMX (Intel, 1978-96)
 - 2. Motorola 68K (Motorola, late 1980, s, early 1990's)
 - 3. MIPS (SGI, 1986-96) I, II, III, IV, V
 - 4. SPARC (Sun, 1987-95) v8, v9
 - 5. ARM (ARM Ltd, 1992-96) ARMv6, ARMv7TDMI
- Instructions in the MIPS instruction set can be divided in five categories:
 - 1. Arithmetic operations: add, sub(subtract), mult(multiply), div (division), etc.
 - 2. Logical operations: and, or, sll (shift left logical), etc.
 - 3. Data Transfer: lw (load), sw (save), etc.
 - 4. Conditional branch: beq(branch if equal), slt set if less than), etc.
 - 5. Unconditional branch: j (jump), etc.

Question: Will the ISA developed on one machine be compatible with another machine of a different manufacturer?

Where are we headed?

- Performance issues (Chapter 1.4 1.8) vocabulary and motivation
- MIPS instruction set architecture (Chapter 2)
- Arithmetic and how to build an ALU (Chapter 3)
- Constructing a processor to execute our instructions (Chapter 4)
- Pipelining to improve performance (Chapter 4)
- Memory: caches and virtual memory (Chapter 5)