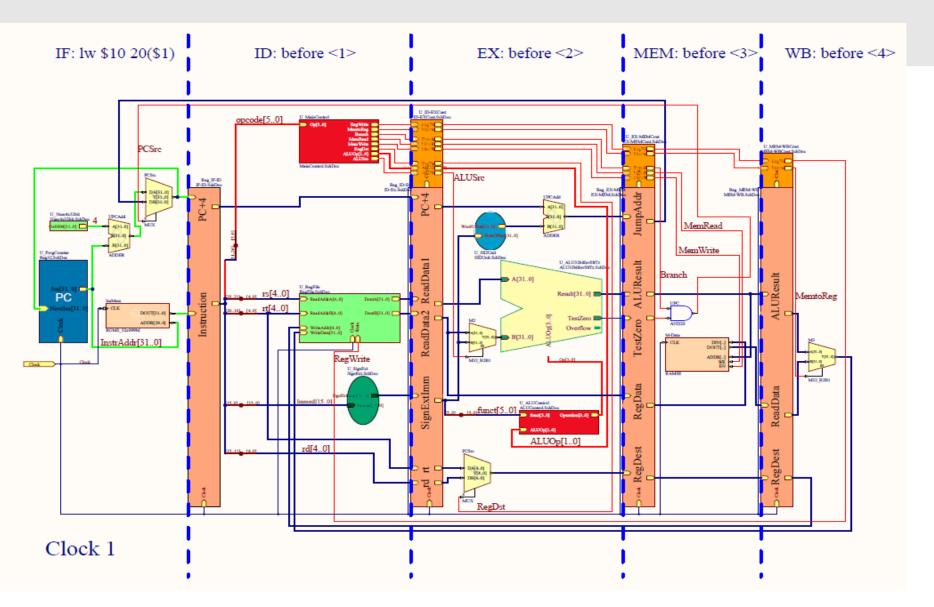
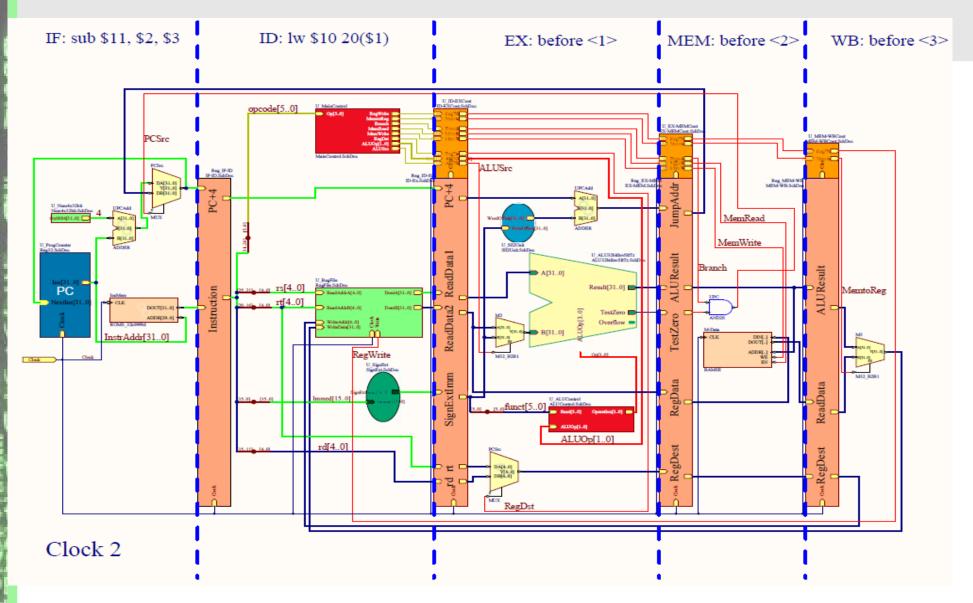
$C_{\overline{S}} = 2021 = 202$

									SI	<u>-</u> R==	ト社明 をに美し	Y T U T U T W I	もレ 保の 文頼な	シはなどであって		の文積なつトサ	m z n z n m	保の文績なフレ
THOFICE	A N N O N N N	H MC UZCO	ト な明 ゆじ笑と 学田	✓ webt→ m → m	8 m × 10 40	HS YEE M	叩 び技す 国出のシ品		の 文精なフ ト社明		こ字印で扱す目		フト社開たをに美と学		50×500		CO4 2013	▲ 本に美と 字印 び
R H	E Ø	10 H H	び技す	IL B	22.47	A T	致患者		をに美と	Þ		L C C	ED) - F			技す
		T. H	開出	* *			μĘ	E A	字印			O Y			-\w~1	c-jvi		

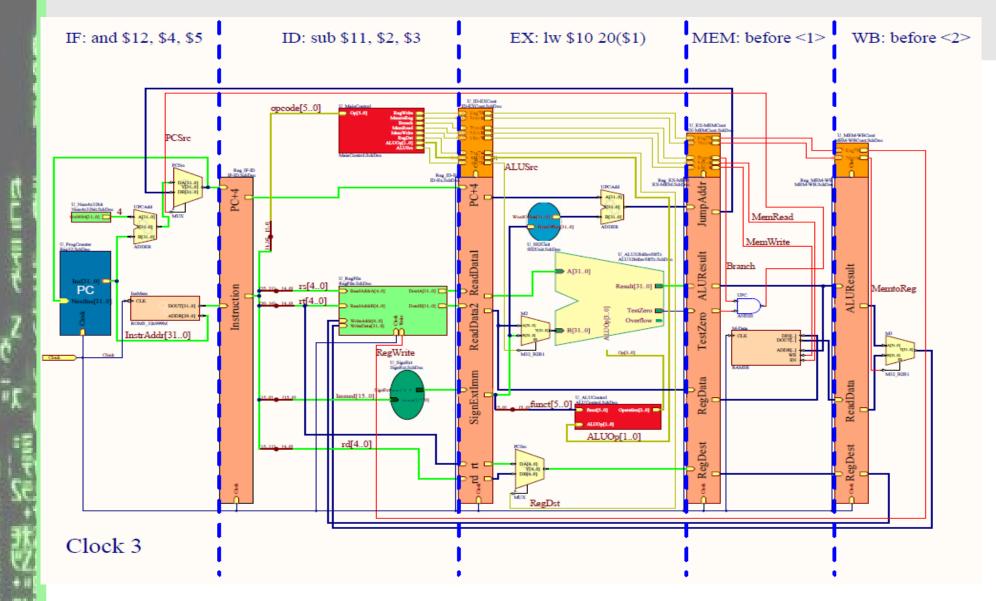
Pipelined Control (2)

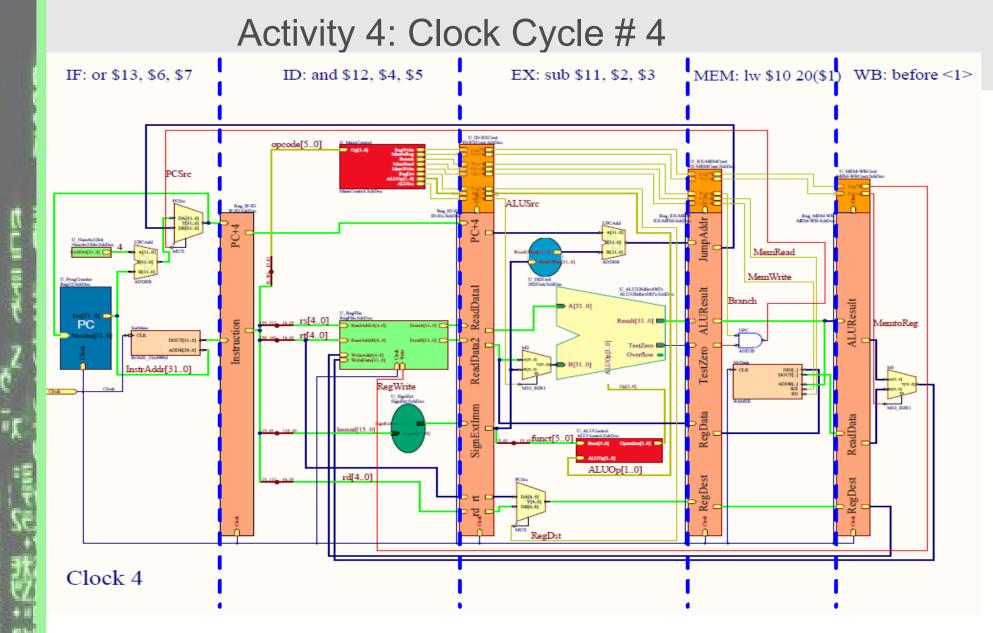

- Control lines in pipelined implementation are divided into five groups according to the pipeline stage
- 1. Instruction Fetch: No control needed as the "write control" of PC and "read control" of instruction memory is always asserted.
- 2. Instruction Decode/Register File Read: No controls needed as the register file in being read during each instruction.
- Execution/Address Calculation: Control signals are ALUSrc, RegDst, and ALUOp.
 For lw/sw instructions, ALUSrc = 1, RegDst = 0 and ALUOp = 00. For R-type instructions, ALUSrc = 0, RegDst = 1, and ALUOp = 10.
- 4. Memory Access: Control signals are Branch, MemWrite, and MemRead. For lw instruction, MemRead = 1 and Branch = MemWrite = 0. For sw instruction, MemWrite = 1 and Branch = MemRead = 0. For branch instructions, Branch = 1 and Memwrite = MemRead = 0. For R-type instructions, Branch = MemWrite = MemRead = 0.
- 5. Write Back: Control signals are MemtoReg. For lw instructions, MemtoReg = 1. For R-type instructions, MemtoReg = 0.
- Pipeline registers are extended to include the control signals for each stage of an instruction.

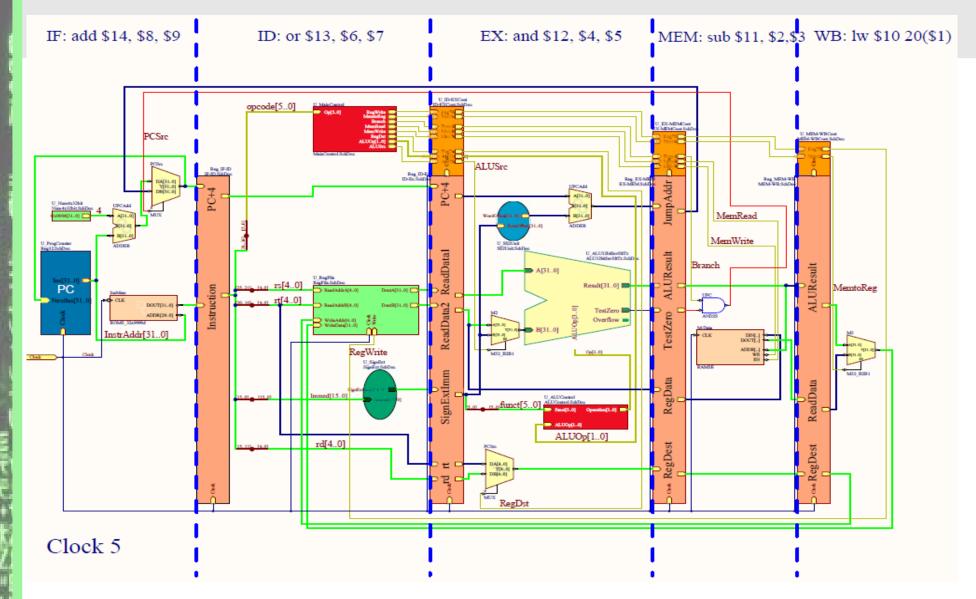
Activity 4


Show the following instructions going through the pipeline:

lw \$10, 20(\$1)
sub \$11,\$2,\$3
and \$12,\$4,\$5
or \$13,\$6,\$7
and \$14,\$8,\$9

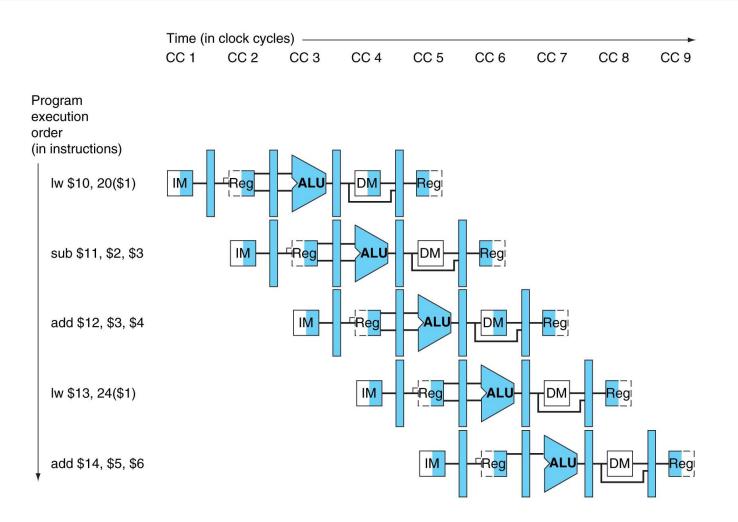

....


٦,



. ٦"

Ċ



Ľ.

. ٦"

Pipeline Diagram (Simplified Notation)

٠<u>۲</u>


Agenda

Topics:

- 1. Pipelined Control (complete)
- 2. Data Hazards Forwarding

Patterson: 4.6, 4.7

Remaining Schedule

You're Cordially Invited:

Final Exam

Tuesday, December 11th

TEL 0016

09:00 to 12:00

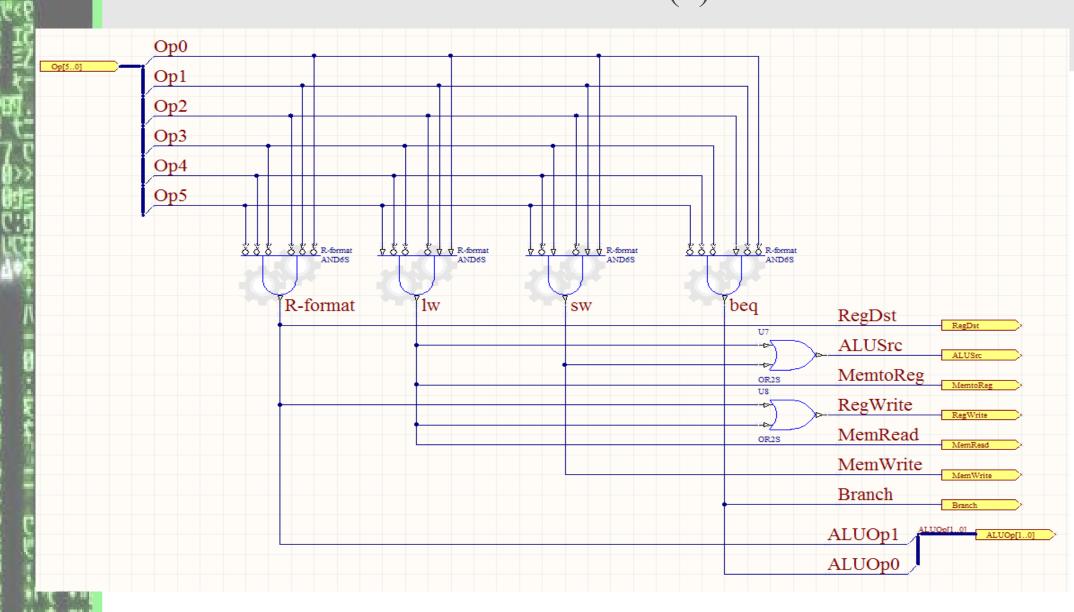
- <u>Remaining Lecture</u>
 <u>Topics (Exam):</u>
- 4.7 Data Hazards Forwarding
- 4.8 Control Hazards
- 5.2 Cache Basics

ALU Control Actions

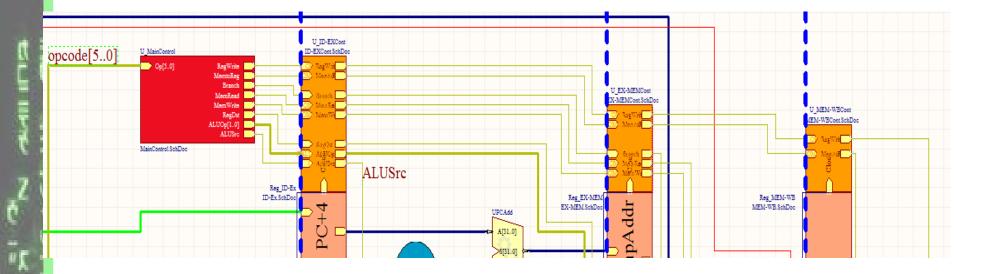
Instruction opcode	ALUOp	Instruction operation	Function code	Desired ALU action	ALU control input
LW	00	load word	XXXXXX	add	0010
SW	00	store word	XXXXXX	add	0010
Branch equal	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
R-type	10	subtract	100010	subtract	0110
R-type	10	AND	100100	AND	0000
R-type	10	OR	100101	OR	0001
R-type	10	set on less than	101010	set on less than	0111

Action of Pipeline Control Signals

Signal name	Effect when deasserted (0)	Effect when asserted (1)
RegDst	The register destination number for the Write register comes from the rt field (bits 20:16).	The register destination number for the Write register comes from the rd field (bits 15:11).
RegWrite	None.	The register on the Write register input is written with the value on the Write data input.
ALUSrc	The second ALU operand comes from the second register file output (Read data 2).	The second ALU operand is the sign-extended, lower 16 bits of the instruction.
PCSrc	The PC is replaced by the output of the adder that computes the value of $PC + 4$.	The PC is replaced by the output of the adder that computes the branch target.
MemRead	None.	Data memory contents designated by the address input are put on the Read data output.
MemWrite	None.	Data memory contents designated by the address input are replaced by the value on the Write data input.
MemtoReg	The value fed to the register Write data input comes from the ALU.	The value fed to the register Write data input comes from the data memory.

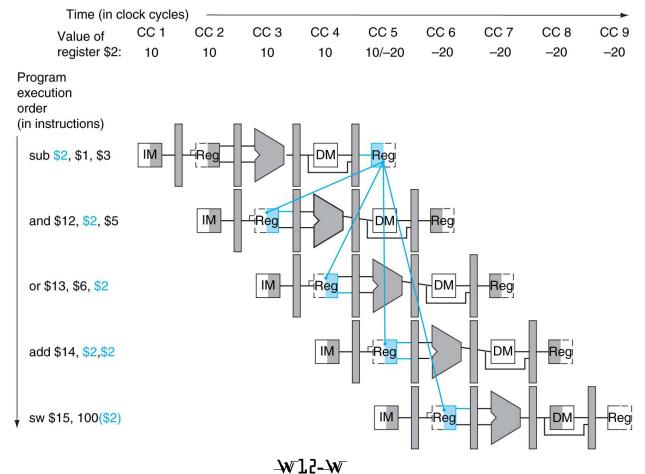

Control for Pipeline – Arranged by Pipeline Stage

	Execut		s calculatio I lines	n stage	Memory access stage Write-back control lines control lines				
Instruction	RegDst	ALUOp1	ALUOp0	ALUSrc	Branch	Mem- Read	Mem- Write	Reg- Write	Memto- Reg
R-format	1	1	0	0	0	0	0	1	0
٦w	0	0	0	1	0	1	0	1	1
SW	Х	0	0	1	0	0	1	0	Х
beq	Х	0	1	0	1	0	0	0	Х

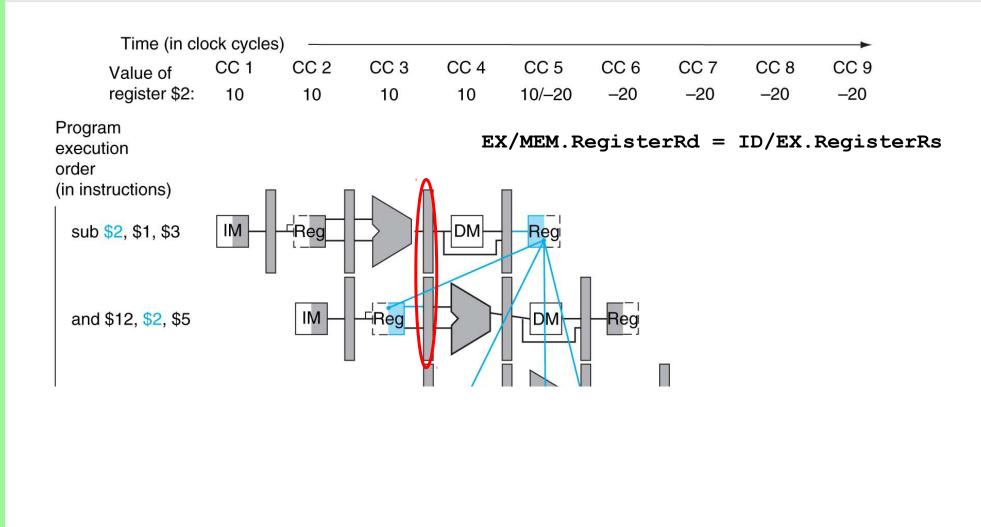

Controls same as before for the single or multi-cycle implementations, rearranged according to pipeline stage

Main Control (6)

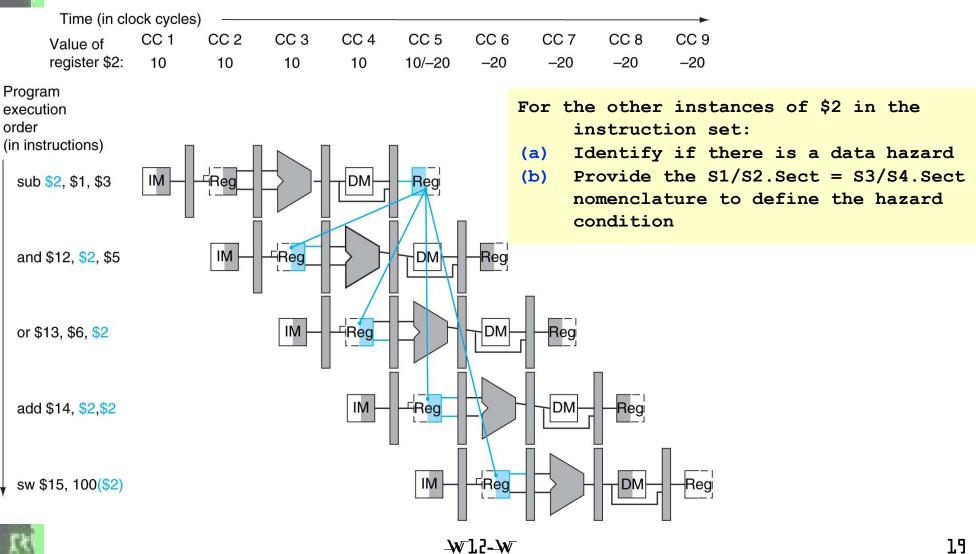
10


Wiring of Control Outputs for the Pipeline Implementation

Outputs travel between registers and are wired to correct datapath unit at the appropriate instruction stage


Data Hazards

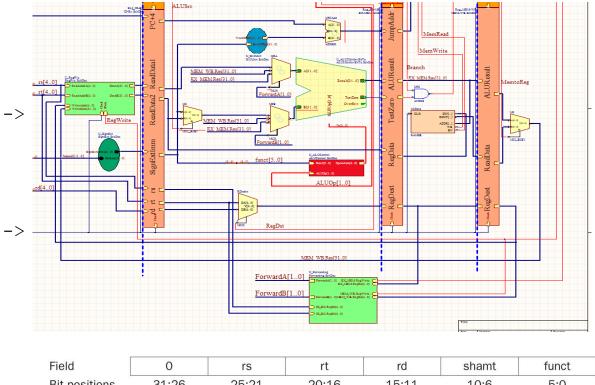
Consider the following instruction sequence and the resulting pipeline diagram...


-• [

Data Hazard Nomenclature

۳٢

Data Hazard Nomenclature - Activity



Forwarding from EX/MEM Pipeline Register

Conditions:

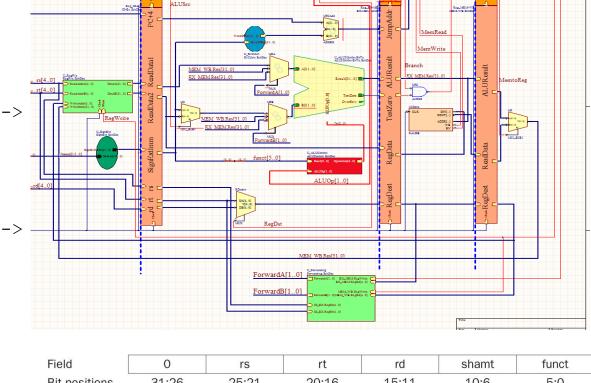
```
(EX/MEM.RegWrite &
EX/MEM.RegisterRd ≠ 0 &
EX/MEM.RegisterRd=ID/EX.RegisterRs) ->
ForwardA = 10
```

```
(EX/MEM.RegWrite &
EX/MEM.RegisterRd ≠ 0 &
EX/MEM.RegisterRd=ID/EX.RegisterRt) ->
ForwardB = 10
```


sub \$2, \$1, \$3 and \$12, \$2, \$5 or \$13, \$6, \$2 Note: Only R-type instructions covered for forwarding, no I-type, eg - sw \$2, 0(\$13) (Rd = 0)

Field	0	rs	rt	rd	shamt	funct
Bit positions	31:26	25:21	20:16	15:11	10:6	5:0
a. R-type i	nstruction					

Field	35 or 43	rs	rt	address
Bit positions	31:26	25:21	20:16	15:0
b. Load or	store instr	uction		


W12-W

Forwarding from MEM/WB Pipeline Register

Conditions:

```
(MEM/WB.RegWrite &
MEM/WB.RegisterRd ≠ 0 &
MEM/WB.RegisterRd=ID/EX.RegisterRs) ->
ForwardA = 01
```

```
(MEM/WB.RegWrite &
MEM/WB.RegisterRd ≠ 0 &
MEM/WB.RegisterRd=ID/EX.RegisterRt) ->
ForwardB = 01
```


sub \$2, \$1, \$3
and \$12, \$2, \$5
or \$13, \$6, \$2
[Note: Only R-type instructions
covered for forwarding,
no I-type, eg - sw \$2, 0(\$13) (Rd = 0)

rielu	0	15	11	iu	Shant	Turict
Bit positions	31:26	25:21	20:16	15:11	10:6	5:0
a. R-type i	nstruction					
Field	35 or 43	rs	rt		address	

Field		35 OF 43	rs	n	address
Bit posit	ions	31:26	25:21	20:16	15:0
b. Loa	d or	store instru	uction		

W12-W

Mux Truth Table For Forwarding

Mux control	Source	Explanation
ForwardA = 00	ID/EX	The first ALU operand comes from the register file.
ForwardA = 10	EX/MEM	The first ALU operand is forwarded from the prior ALU result.
ForwardA = 01	MEM/WB	The first ALU operand is forwarded from data memory or an earlier ALU result.
ForwardB = 00	ID/EX	The second ALU operand comes from the register file.
ForwardB = 10	EX/MEM	The second ALU operand is forwarded from the prior ALU result.
ForwardB = 01	MEM/WB	The second ALU operand is forwarded from data memory or an earlier ALU result.