Assignment (CSE6328 F12)

Due: in class on Oct 10, 2012

You have to work individually. Hand in a hardcopy of your answers before the deadline. No late submission will be accepted. No handwritting is accepted. Direct your queries to Hui Jiang (hj@cse.yorku.ca).

1. Assume we have a random vector $\mathbf{x}=\binom{x_{1}}{x_{2}}$ which follows a bivariate Gaussian distribution: $\mathcal{N}(\mathbf{x} \mid \mu, \Sigma)$, where $\mu=\binom{\mu_{1}}{\mu_{2}}$ is the mean vector and $\Sigma=$ $\left(\begin{array}{cc}\sigma_{1}^{2} & \rho \sigma_{1} \sigma 2 \\ \rho \sigma_{1} \sigma 2 & \sigma_{2}^{2}\end{array}\right)$ is the covariance matrix. Derive the formula to compute mutual information between x_{1} and x_{2}, i.e., $I\left(x_{1}, x_{2}\right)$.

Hints: Refer to the related sections in the reading assignment [W2]. Note there is a mistake in [W2]: equation (99) should be

$$
\Gamma(n+1)=n \cdot \Gamma(n)
$$

2. Assume we have two Gaussian distributions: $\mathcal{N}\left(x \mid \mu_{1}, \sigma_{1}^{2}\right)$ and $\mathcal{N}\left(x \mid \mu_{2}, \sigma_{2}^{2}\right)$, where μ_{1} and μ_{2} are their means, and σ_{1}^{2} and σ_{2}^{2} are their variances. Derive the formula to computer the K-L divergence between these two Gaussian distribution.
3. In many pattern classification problems, one has the option either to assign the pattern to one of N classes, or to reject it as being unrecognizable. If the cost for rejection is not too high, rejection may be a desirable action. If we observe feature \mathbf{x} of a pattern (assume its true class id is ω_{i}), let's define the loss function for all actions α_{j} as:

$$
\lambda\left(\alpha_{j} \mid \omega_{i}\right)=\left\{\begin{aligned}
0 & : \\
\lambda_{s} & : j=i \text { (correct classification) } \\
\lambda_{r} & : \quad \text { rejection }
\end{aligned}\right.
$$

where λ_{s} is the loss incurred for making any a wrong classification decision, and λ_{r} is the loss incurred for choosing the rejection action. Show the minimum risk is obtained by the following decision rule: we decide ω_{i} if $p\left(\omega_{i} \mid \mathbf{x}\right) \geq p\left(\omega_{j} \mid \mathbf{x}\right)$ for all j and if $p\left(\omega_{i} \mid \mathbf{x}\right) \geq 1-\lambda_{r} / \lambda_{s}$, and reject otherwise. What happens if $\lambda_{r}=0$? What happens if $\lambda_{r}>\lambda_{s}$?
(Hint: consider the average loss for each action.)
4. Suppose we have three classes in two dimensions with the following underlying distributions:

- class $\omega_{1}: p\left(\mathbf{x} \mid \omega_{1}\right) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- class $\omega_{2}: p\left(\mathbf{x} \mid \omega_{2}\right) \sim \mathcal{N}\left(\binom{1}{1}, \mathbf{I}\right)$
- class $\omega_{3}: p\left(\mathbf{x} \mid \omega_{3}\right) \sim \frac{1}{2} \mathcal{N}\left(\binom{0.5}{0.5}, \mathbf{I}\right)+\frac{1}{2} \mathcal{N}\left(\binom{-0.5}{0.5}, \mathbf{I}\right)$
where $\mathcal{N}(\mu, \Sigma)$ denotes 2-d Gaussian distribution with mean vector μ and covariance matrix Σ, and \mathbf{I} is identity matrix. Assume class prior probabilities $P\left(\omega_{i}\right)=1 / 3, i=$ $1,2,3$.
(a) By explicit calculation of posterior probabilities, classify the feature $\mathbf{x}=\binom{0.3}{0.3}$ based on the MAP decision rule.
(b) Suppose that for a particular pattern the first feature is missing. Classify $\mathbf{x}=\binom{*}{0.3}$ for minimum probability of error.

5. you have collected a set of data samples $x_{1}, x_{2}, \cdots, x_{n}$. If we assume the data follow an exponential distribution as

$$
p(x \mid \theta)=\left\{\begin{array}{rll}
\theta e^{-\theta x} & : & x \leq 0 \\
0 & : & \text { otherwise }
\end{array}\right.
$$

Derive the maximum-likelihood estimate for the parameter θ.
6. Assume we have c different classes, $\omega_{1}, \omega_{2}, \cdots, \omega_{c}$. Each class $\omega_{i}(i=1,2, \cdots, c)$ is modeled by a univariate Gaussian distribution with mean μ_{i} and variance σ, i.e., $p\left(x \mid \omega_{i}\right)=\mathcal{N}\left(x \mid \mu_{i}, \sigma^{2}\right)$, where σ is a common variance for all c classes. Suppose we have collected n data samples from these c classes, i.e., $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, and let $\left\{l_{1}, l_{2}, \cdots, l_{n}\right\}$ be their labels so that $l_{k}=i$ means the data sample x_{k} comes from the i-th class, ω_{i}.

Based on the given data set, derive the maximum-likelihood estimates for all model parameters, i.e., all means $\mu_{i}(i=1,2, \cdots, c)$ and the common variance σ.

