
Assignment (CSE6328 F12)

Due: in class on Oct 10, 2012

You have to work individually. Hand in a hardcopy of your answers before the dead-

line. No late submission will be accepted. No handwritting is accepted. Direct your queries

to Hui Jiang (hj@cse.yorku.ca).

1. Assume we have a random vector x =

 x1

x2

 which follows a bivariate Gaus-

sian distribution: N (x|µ,Σ), where µ =

 µ1

µ2

 is the mean vector and Σ = σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 is the covariance matrix. Derive the formula to compute mu-

tual information between x1 and x2, i.e., I(x1, x2).

Hints: Refer to the related sections in the reading assignment [W2]. Note there is a

mistake in [W2]: equation (99) should be

Γ(n+ 1) = n · Γ(n).

2. Assume we have two Gaussian distributions: N (x|µ1, σ
2
1) and N (x|µ2, σ

2
2), where

µ1 and µ2 are their means, and σ2
1 and σ2

2 are their variances. Derive the formula

to computer the K-L divergence between these two Gaussian distribution.

3. In many pattern classification problems, one has the option either to assign the

pattern to one of N classes, or to reject it as being unrecognizable. If the cost for

rejection is not too high, rejection may be a desirable action. If we observe feature

x of a pattern (assume its true class id is ωi), let’s define the loss function for all

actions αj as:

λ(αj|ωi) =


0 : j = i (correct classification)

λs : j 6= i and 1 ≤ j ≤ N(wrong classification)

λr : rejection

where λs is the loss incurred for making any a wrong classification decision, and

λr is the loss incurred for choosing the rejection action. Show the minimum risk is

obtained by the following decision rule: we decide ωi if p(ωi|x) ≥ p(ωj|x) for all j

and if p(ωi|x) ≥ 1 − λr/λs, and reject otherwise. What happens if λr = 0 ? What

happens if λr > λs?

(Hint: consider the average loss for each action.)
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4. Suppose we have three classes in two dimensions with the following underlying

distributions:

• class ω1: p(x|ω1) ∼ N (0, I)

• class ω2: p(x|ω2) ∼ N
((

1
1

)
, I
)

• class ω3: p(x|ω3) ∼ 1
2
N
((

0.5
0.5

)
, I
)

+ 1
2
N
((

−0.5
0.5

)
, I
)

whereN (µ,Σ) denotes 2-d Gaussian distribution with mean vector µ and covariance

matrix Σ, and I is identity matrix. Assume class prior probabilities P (ωi) = 1/3, i =

1, 2, 3.

(a) By explicit calculation of posterior probabilities, classify the feature x =
(

0.3
0.3

)
based on the MAP decision rule.

(b) Suppose that for a particular pattern the first feature is missing. Classify

x =
(

∗
0.3

)
for minimum probability of error.

5. you have collected a set of data samples x1, x2, · · · , xn. If we assume the data follow

an exponential distribution as

p(x|θ) =

 θe−θx : x ≤ 0

0 : otherwise.

Derive the maximum-likelihood estimate for the parameter θ.

6. Assume we have c different classes, ω1, ω2, · · · , ωc. Each class ωi (i = 1, 2, · · · , c) is

modeled by a univariate Gaussian distribution with mean µi and variance σ, i.e.,

p(x | ωi) = N (x | µi, σ2), where σ is a common variance for all c classes. Suppose

we have collected n data samples from these c classes, i.e., {x1, x2, · · · , xn}, and let

{l1, l2, · · · , ln} be their labels so that lk = i means the data sample xk comes from

the i-th class, ωi.

Based on the given data set, derive the maximum-likelihood estimates for all model

parameters, i.e., all means µi (i = 1, 2, · · · , c) and the common variance σ.
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