Prepared by Prof. Hui Jiang 12-09-09
(COSC6328)

CSE6328.3 YOR ' redefine THE POSSIBLE
Speech & Language Processing 7 h

No.2

Math Background

Prof. Hui Jiang
Department of Computer Science and Engineering
York University

Pattern Classification and
Pattern verification
- Many applications fall into the categories: pattern classification
or pattern verification.

- Pattern classification: based on some observed information of an
input, classify it into one of the finite number of classes.

— Speech recognition

Speaker identification (recognition)
Text categorization

Language understanding

— etc.

- Pattern Verification:
— Speaker verification
— Audiol/video segmentation
— etc.
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Major Paradigm Shift:
Rule/Knowledge-Based = Data-Driven

- Rule/Knowledge-based method:
— Experts analyze some samples to gain knowledge.
— Knowledge representation: rule-based.
— Inference based on rules: parsing, etc.
Data-driven statistical approach:
— Collect a mass amount of representative data.
— Manually select a statistical model for the underlying data.
— Model estimation from the data set automatically.
— Make decision based on the estimated models.

Recently, data-driven statistical approach has achieved great
successes in many many real-world applications:

— Automatic speech recognition (ASR)
— Statistical machine translation
— Computational linguistics

Probability & Statistics: review

Probability
Random variables/vectors: discrete vs. continuous
Probability distribution of random variables: pmf, pdf, cdf
Mean, variance, moments
- Conditional probability & Bayes’ theorem: independence
- Joint Probability distribution: marginal distribution
- Some useful distributions:
— Multinomial, Gaussian, Uniform, Dirichlet, Gamma, etc.

Information Theory: entropy, mutual information, information
channel, KL divergence, etc.

- CART (Classification and Regression Tree)
Function Optimization
Linear Algebra: matrix manipulation

- Others

Dept. of CS, York Univ. 2
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Probability Definition

Sample Space: ()

— collection of all possible observed outcomes
An Event A: 4 C Q) including null event (p
O-field: set of all possible events e F,
Probability Function (Measurable) P:F, —[0,]

—  Meet three axioms:

1. P(@)=0 PQ)=1

2. If ACB then P(A)<P(B)

3. f AnB=¢ then P(AUB)=P(A)+P(B)

Some Examples
Example I: experiment to toss a 6-face dice once:
Sample space: {1,2,3,4,5,6}
Events: X={even number}, Y={odd number}, Z={larger than 3}.
O -field: set of all possible events
—  Probability Function (Measurable) = relative frequency
Example II:
Sample Space:
Q = {x: x is the height of a person on earth}
Events:
+  A={x: x>200cm}
+  B={x: 120cm<x<130cm}
O field: set of all possible events [,
—  Probability Function (Measurable) p. F, —[0,1]
measuring A, B:

# of persons whose height over 200cm

Pr(4)=
) total # of persons in the earth

Dept. of CS, York Univ. 3
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Conditional Events

Prior Probability

—  probability of an event before considering any additional
knowledge or observing any other events (or samples): P(A)

Joint probability of multiple events: probability of several events
occurring concurrently, e.g., P(ANB).

Conditional Probability: probability of one event (A) after another
event (B) has occurred, e.g., P(A|B).

updated probability of an event given some knowledge about
another event. Definition is:

P(A|B)=P(AN B)/P(B)
Prove the Addition Rule:
P(AU B) = P(A)+ P(B)— P(AN B)

From Muiltiplication Rule, show Chain Rule:

n—1
P(A4 N Ay N0 A,) = P(A)P(4,| 4)--P(4, (] 4)

Bayes' Theorem

Swapping dependency between events
- calculate P(BJA) in terms of P(A|B) that is available and more relevant in

some cases
P(BNA) _P(A|B)P(B)

P(B|A)=
P(4) P(4)
In some cases, not important to compute P(A)
P(4|B)P(B)

B =argmax P(B| A) = arg max =argmax P(A4| B)P(B)
B B B

P(4)

Another Form of Bayes’ Theorem
- If a set B partitions A, i.e.

A=\J B BB =¢

P(A|B,)P(B;) P(A|B;)P(B,)
P Y P(B)

P(B,| 4)=

Dept. of CS, York Univ. 4
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Random Variable

- A random variable (R.V.) is a variable which could take various

values with different probabilities.

- A R.V. is said to be discrete if its set of possible values is a discrete

set. The probability mass function (p.m.f.) is defined:

f(x)=Pr(X=x) forx=ux,x,, f(x)=1

- A univariate discrete R.V., one p.m.f. exarr;iple:
x | 1 | 2 | 3 | 4
f) | 04 | 03 | 02 [ o041

- A R.V. is said to be continuous if its set of possible values is an

entire interval of numbers. Each continuous R.V. has a distribution
function: for a R.V. X, its cumulative distribution function (c.d.f.) is

defined as: F(t)=Pr(X <1) (-0 <t <o)
lim F(1)=0  limF(1)=1
t—>—o0 1=

- A probability density function (p.d.f.) of a continuous R.V. is a
function that for any two number a, b (a<b),

Pria<X<bh)=[ fde FO=[ fxydc ["f(x)de=1

Random Variable

Expectation of random variables and its functions

EQ)=[ xfde o Yx-p)

E(@@(X) = q(0)-f()dx or Y, q(x) p(x,)

Mean and Variance
Mean(X)=E(X) Var(X)=E(X-E(X)]")
r-th moment (r=1,2,3,4,...)
EQX) =[x fde  or  ¥xplx)

Random vector is a vector whose elements are all random
variables.

Dept. of CS, York Univ.
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Joint and Marginal Distribution

Joint Event and Product Space of two (or more) R.V.’s chgd
e.g. E=(A,B)=(200cm<height, live in Canada)
Joint p.m.f of two discrete random variables X, Y:

X \Y 0 1 2
T 0.03 0.24 0.17
F 0.23 0.11 0.22

Joint p.d.f. (c.d.f.) of two continuous random variables X, Y:
px,y)=Pr(X<x,Y <y)

b rd
Pra<x<bc<y<d)=[ [ fx.y)dydx

Marginal p.m.f. and p.d.f.:

p(x)=Y, p(x.y) [(x)=]f(x,y)dy

Conditional Distribution of RVs

° Conditional p.m.f. or p.d.f. for discrete or continuous R.V.’ s
Fxly)y=fy)/ f(y)

Conditional Expectation
E(@(X)|Y =) =[_q(x)f(x|y)dx or Y qx)p(x|,)
Conditional Mean:
E(X |Y = y,) =[x f (x| y,)dx
Independence:
)= f») fxly)=7(x)
Covariance between two R.V.’ s
Cov(X,Y)=E([X —E(X)][Y -E(Y)])

=[] = BCON=E@)- £(x. ) drdy

Uncorrelated R.V.’ s:

Cov(X,Y)=E([X —E(X)][Y -E(Y)])=0

Dept. of CS, York Univ.
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Some Useful Distributions (I)

Binomial Distribution: B(R=r; n, p)
—  probability of r successes in n trials with a success rate p

n!

B(r;n, p)= p (1-p)"" where 0<r<n

ri(n—r)!
- For binomial distribution:

> Bin,p)=1  E (R)=Y" rB(r;n,p)=np Var,(R)=np(l-p)
Multinomial Distribution

. n! no < m
M(@,...,r50, P50, p,) = Hizlp, 0<r L h=n

nleer,!

- For multinomial distribution

ER)=np, Var(R)=np,(1-p,) Cov(Ri,Rj) =—np,p,;

Plot of Probability Mass Function

Binomial distribution: n=3, p=0.7

B(r;n, p)= p'(1-p)"” where 0<r<n

r!(n;r)!

P(R=r) 0.441

0.343

0.189

0.027

0 1 2 3 r

Dept. of CS, York Univ.
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Some Useful Distributions (ll)

- Poisson Distribution with mean (and var) as A (1 >0)

-1 X
¢ = forx=012,---
pxl)=4 *©
0 otherwise

- Beta distribution with parameters

F(a + ﬁ) xa—l
px|apy=1 @ TP

(1-x)P" forO<x<1 Plx)

0 otherwise BN '
— For Beta distribution:

EX)=—%  Var(x)= f‘ﬁ
o+f (a+B) (o+p+1)

'}ﬁ_,__

Some Useful Distributions (lll)

- Dirichlet distribution: a random vector (X1,...,Xk) has a Dirichlet
distribution with parameter vector (az,..., ax) (for all ak>0) if

o, +--+a,) ,_ -
p(Xla"'an|a19”'aO‘k)= : . xll 1"'xk 1
F(al)"'r(ak)

forallx, >0 (i=12,--,k) and 3" x =1.

— For Dirichlet distribution:

k
Denote o, = ) _ o,

E(X)= o Var(X,)= w
o o (0 +1)
oo
Cov(X,, X ;) =——5—"—
o, (o, +1)

Dept. of CS, York Univ.
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Some Useful Distributions (1V)

Uniform Distribution: U(X=x; a, b)

Ulnapy= /O~ asxsb oy
0 otherwise

Normal (or Gaussian) Distribution: Bell Curve

1 ()2 2
N(x;,u,oz):—ze‘“‘)’z" —c0o<x<o0 >0
2rno
Show

a+b (b-a)’
2

E,(X)= and E,(X)=u VARU(X)=T and VAR, (X)=0"

Ax) IXx)

Typical Normal Distributions
My Ho

0.12r

0.1 Threshold
z

P(T(X) \ HO)

Probability

o o

g 2
D4

0.02F

Region | . Region |l
o]

—10 -5 5 10 15
T(X)

Standard deviation (s.d. or spread): O, > O,

Dept. of CS, York Univ.
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Some Useful Distributions (V)

- Gamma Distribution: a random variable X has a gamma
distribution with parameters a and g (a>0, >0) if

B e forx>0
o)

p(xla,B)=

0 otherwise

with
P(x)
o) = L u“"'e™du (gamma function)
o o
E(X)=— Var(X)=—
B B’

(1,2)

Some Useful Distributions (VI)
2-D Uniform Distribution:

1/(b—a)(d - cx<hesysd
U(x,y;a,b,c,d):{/( a)d—c) a<x<bc<y

] with a<b,c<d
0 otherwise

Multivariate Normal Distribution

S(x-)'C (x-p) /2

! € —oc0 < X < 00
Jeryici

Nx;u,C)=

Show E,(X)=u and VAR, (X)=C

Can you write down the 2-D distribution form, compute

Cov(X,Y), and derive the marginal and conditional densities,
f(y) and f(x]y) ?

2
IE o [m C:{ o’ m{y}
X = y !‘Ly Y'GXO'Y GJ/

Dept. of CS, York Univ.
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Gaussian Mixture Distribution

Gaussian Mixture distribution:

MG(x)=Y" ,N(x;,.02) with 3" ©, =1 0<w,<1 0,>0

Distribution of speech
features (MFCC) over
a large population

L]

In theory, MG(x) matches any probabilistic density up to second
order statistics (mean and variance)

Approximating multi-modal densities which is more likely to
describe real-world data.

Multinomial Mixture Models

The idea of mixture applies to other distributions.
Multinomial Mixture model (MMM):

MMM(x)zz;a)k-M(rl,...,rm;n,pk,,...,pkm) with Zszla)kzl 0<w, <1

— Useful for modeling complex discrete data, such
as text, biological sequences, etc...

Dept. of CS, York Univ. 1"
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Parametric Distributions

Parametric Distribution
—  r.v. described by a small number of parameters in pdf/pmf
— e.g. Gaussian (2), Binomial (2), 2-d uniform (4)
— many useful and known parametric distributions

- Probability distribution of independently and identically distributed
(i.i.d.) samples from such distributions can be easily derived.

Non-Parametric Distribution
— usually described by the data samples themselves

—  Sample distribution & histogram (pmf / bar chart): counting samples
in equally-sized bins and plot them

Statistic: Function of random samples
- sample mean and variance, maximum/minimum, etc.
Sufficient Statistics
- minimum number of statistics to remember all samples
—  for Gaussian r.v. need count, sample mean and variance
- for some r.v.’ s, no sufficient statistics, need all samples

Function of Random Variables

Function of r.v.” s is also a r.v.
- e.g. X=U+V+W, if we know f(u,v,w) how about f(x) ?
— e.g. sum of dots on two dices
Problem easier for known and popularr.v.’s
— e.g.ifUandV are independent Gaussian, so is X=U+V

N(|1y,00)+N(.| 1,,065) = N(| i, + 4,07 +03)

— e.g. if Wand Z are independent uniform, is Y=W+Z uniform?
Sample mean of n independent samples of Gaussian r.v.’s is also
Gaussian, show that:

E(X)=u Var(X)=0"/n
Average of two independent samples of uniform r.v.”s form a
triangular shape p.d.f.
How about n samples and n is very large?
—  Law of large numbers — asymptotic Normal p.d.f. !I!

Dept. of CS, York Univ. 12
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Transformation of Random Variables

Given random vectors X =(X,,---X) and Y =(¥,,---,Y,)
We know Y, =g,(X),--.Y, =g,(X)
Given p.d.f. of X, p,(X)=p,(X,,-~-X,), how to derive p.d.f. for ¥ ?

If the transformation is one-to-one mapping, we can derive an
inverse transformation as: X, =#4,(Y),---, X, =h,(Y)

We define the Jacobian matrix as:

n o
REA
JY)=| : : :
O, o,

v oy

n

We have

Py (V)= py (b (V),+-h, (V)| J(T)

Probability Theory Recap

Probability Theory Tools
—  fuzzy description of phenomena
—  statistical modeling of data for inference
Statistical Inference Problems
- Classification: choose one of the stochastic sources

- Decision and Hypothesis Testing: comparing two stochastic
assumptions and decide on how to accept one of them

—  Estimation: given random samples from an assumed distribution, find
“good” guess for the parameters

- Prediction: from past samples, predict next set of samples

—  Regression (Modeling): fit a model to a given set of samples
Parametric vs. Non-parametric Distributions

—  parsimonious or extensive description (model vs. data)

—  Sampling, data storage and sufficient statistics
Real-World Data vs. Ideal Distributions

—  “there is no perfect goodness-of-fit”

— ideal distributions are used for approximation

—  sum of random variables and Law of Large Numbers

Dept. of CS, York Univ. 13
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Information Theory & Shannon

Claude E. Shannon (1916-2001, from Bell Labs to MIT): Father of
Information Theory, Modern Communication Theory ...

Information of an event:  /(4) =log, 1/Pr(4) =-log, Pr(A4)
Entropy (Self-Information) — in bit, amount of info in a r.v.

1
H(X)=-) p(x)log,p(x) = E[log, m] 0log,0=0
xeX
—  Entropy represents average amount of information in a r.v., in other
words, the average uncertainty related to a r.v.

Contributions of Shannon:

—  Study of English — Cryptography Theory, Twenty Questions game,
Binary Tree and Entropy, etc.

—  Concept of Code - Digital Communication, Switching and Digital
Computation (optimal Boolean function realization with digital relays
and switches)

—  Channel Capacity — Source and Channel Encoding, Error-Free
Transmission over Noisy Channel, etc.

—  C. E. Shannon, “A Mathematical Theory of Communication”, Parts 1
& 2, Bell System Technical Journal, 1948.

—  He should have won a Nobel Prize for his contributions (1948 is also
the year of the discovery of transistor at Bell Labs)

Joint and Conditional Entropy

Joint entropy: average uncertainty about two r.v.” s; average amount of
information provided by two r.v.’s.

1
H(X,Y)=E[log, m] = —;y; p(x,y)log, p(x,y)

Conditional entropy: average amount of information (uncertainty)

of Y after X is known.

HY|X)==Y p()HY | X =x)=Y, p(x)[-Y, p(y| x)log, p(y| x)]

xeX yeY

== p(x.y)log,p(y|x)

xeXyeY

Chain Rule for Entropy :
HX,Y)=HX)+HY|X)=HX)+H(X|Y)
H(X, X0 X,) = HX)+H(X, | X))+ +H(X, | X 5., X, )

Independence:
HX,Y)=H(X)+HY) or HY|X)=H(Y)

Dept. of CS, York Univ.
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Mutual Information

Definition :
I(X,Y)=H(X)-H(X|Y)
=H®Y)-H(Y|X)
=H(X)+H(Y)-H(X,Y)
I(X,Y)= p(x)log, (x)+2p(y) 8BS ZZP( .y)log, —— ( 5
I(X,Y log, P&V y)log, L) g
(X,Y)= gx,;p(x Mog, 5 ”p(x ¥)log D900

Intuitive meaning of mutual information: giventwo r.v.’s, X and Y,
mutual information /(X,Y) represents average information about Y
(or X) we can get from X (or Y).

Maximization of I(X,Y) is equivalent to establishing a closer
relationship between X and Y, i.e., obtaining a low-noise
information channel between X and Y.

Shannon’ s Noisv Channel Model

Shannon’ s Noisy Channel Model

Intended X Y Decoded
essae Channel Message
—1 Encoder [ Decoder [
Py
A Binary Symmetric Noisy Channel (Modem Application)
(/] (/]
1-p
X , y  IX.Y)

1-p

1

Channel Capacity
C=max,,, [(X,Y)=max ,\[HY)-HY | X)]
C=1-H(p)<1

p(X) & p(Y|X) can be given by design or by nature.

Dept. of CS, York Univ. 15
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Mutual Information: Example (I)

In Shannon’ s noisy channel model: assume X={0,1} Y={0,1}
X is equiprobable Pr(X=0)=Pr(X=1)=0.5 = H(X) =1 bit
joint distribution p(X,Y)=p(X) p(Y|X)
— Case | : p=0.0 (noiseless)

p(x,y)
I(X,Y)= p(x,y)log
PXY) 0 1 xs{z(),l}ys{(),l} ? p(x)p(»)
0 0.5 0.0 ) 0.5
1 0.0 0.5 =0.5-log, 0.5.0.5+0.0-%—0.5~10g2m+0.0=1.0

— Case ll: p=0.1 (weak noise)

1(X.Y)= Ml P(x.)
P(X.Y) 0 1 xn= 3 Zplee o
0 0.45 0.05
:2-0.45-1og2ﬂm-o.os-logzﬂ:o.s%
1 0.05 0.45 0.5-0.5 0.5-0.5
— Case lll: p=0.4 (strong noise
p (¢ g ) 1X,7) = (%) log, p(x, )
p(X,Y) 0 1 w01} yel01) P(x)p(y)
0 0.3 0.2 =2.03-log,— 23 +2.02-log,—22 =003
0.5-0.5 0.5-0.5
1 0.2 0.3

Mutual Information Example(II):
Identifying keywords in Text Categorization

| News Sports Politics Economy others

w1 |

3,245 documents 7,254 documents 6,785 documents 1,134 documents

All documents contain 10,345 distinct words in total (vocabulary)

How to identify which words are more informative with respect to any one
topic? (keywords of a topic)

Use Mutual information as a criterion to calculate correlation of each word
with any one topic.

Example: word “score” vs. topic “sports”
— Define two binary random variables:
X: a document’ s topic is “sports” or not. {0,1}
Y: a document contains “score” or not. {0,1}
— I(X,Y) = relationship between word “score” vs. topic “sports”

Dept. of CS, York Univ.
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[
Identifying keywords in Text Categorization
Count documents in archive to calculate p(X,Y)

PX =LY =1)= # of docs with topic "sports" and contains "score

total # of docs in the archive

# of docs with topic "sports" and don't contains "score"

p(X=1Y=0)= - -
total # of docs in the archive
Y->“score”
pP(X,Y) 0 1 p(x,¥)
I(X.,Y)= (x, y)log, L2222
X 0 0.802 0.022 | 082 P T
1 0.106 0.070 | o176 1%
0.908 0.092

How about word “what” — topic “sports”

Y->“what”
p(XY) 0 1 I(X.7)= log. _P:Y)
X 0 0.709 o115 |ose D 2, Zpenles (S
1 0.153 0.023 | oa7e 0000070
0.862 0.138

“score” is a keyword for the topic “sports”; “what” is not;

Identifying keywords in Text Categorization

For topic Ti, choose its keywords (most relevant)
— For each word Wi in vocabulary, calculate I(W;,Ti) ;
— Sort all words based on I(W;,Ti) ;
— Keywords w.r.t. topic Ti: top N words in the sorted list.

Keywords for the whole text categorization task:
— For each word W in vocabulary, calculate
I7|

1 .
le(W,.,T,-) or I (W) =max I(W,,T)
i=1 !
— Sort all words based on I(Wj) or I’ (W)).
— Top M words in the sorted list.

107) =

Dept. of CS, York Univ. 17
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Channel Modeling and Decoding

Speech Recognition

Speech Understanding

Words W | Noisy Speech S Message U Noisy Speech S
Channel > —1 Channel
Speech S | chapnel | Words W Speech S | channel | Message M
—1 Decoding > — | Decoding >

Information Retrieval

Speaker Identification

Document/ | Noisy Key Terms J Speaker K| Noisy Speech S
~| Channel > — | Channel
KeyTerms JI Channel | Pocument/ Speech S| Ghannel |Speaker K
Decoding —| Decoding T

’ - -
Bayes Theorem Applications
Bayes’ Theorem for Channel Decoding
. ; P(O|DP(I A
I =argmax P(/ | O) = argmax M =argmax P(O|I)P(I)
I I P(O) I
Application Input Output p(l) p(O/I)
Speech Word Speech Language Acoustic
Recognition Sequence Features Model (LM) Model
Character Actual Letter Letter OCR Error
Recognition Letters images LM Model
Machine Source Target Source Translation
Translation Sentence Sentence LM (Alignment)
Model
Text Semantic Word Concept LM Semantic
Understanding Concept Sequence Model
Part-of-Speech POS Tag Word POS Tag LM | Tagging Model
Tagging Sequence Sequence

Dept. of CS, York Univ.




Prepared by Prof. Hui Jiang 12-09-09
(COSC6328)

Kullback-Leibler (KL) Divergence
Distance measure between two p.m.f.’ s (relative entropy)

D(p|lq)=E,[log, p((x)] 3 p(3log, ”(( ))

— D(pllq)>=0 and D(p||q)=0 if only if q=p

KL Divergence is a measure of the average distance between two
probability distributions.

D(p(x, ) [[q(x,¥)) = D(p(x) || g(x))+ D(p(y | x) | g(y [ x))

Mutual information is a measure of independence

1X.9)=3 3 p(x,)log, % = D(p(x, 1) || p(x)p()

Conditional Relative Entropy

D(p(y|0) a1 x) =Y p(x)Y, p(ry|x)log, 2222 Py

xeX yeyY ( | )

Classification: Decision Trees

Decision Tree classification: interpretability
Example: fruits classification based on features

color = Green?

size = big?

yes

color = yellow?
e.

Watermelon

size = medium?

ves

Apple

Grape Banana

Grapefruit Lemon Cherry  Grape

Dept. of CS, York Univ. 19
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Classification and Regression Tree
(CART)

Binary tree for classification: each node is attached a YES/NO
question; Traverse the tree based on the answers to questions; each
leaf node represents a class.

- CART: how to automatically grow such a classification tree on a
data-driven basis.

— Prepare a finite set of all possible questions.

— For each node, choose the best question to split the node.
“best” is in sense of maximum entropy reduction between
“before splitting” and “after splitting".

* Entropy—> uncertainty or chaos in data;
Small entropy > more homogeneous the data is; less impure

X

yes, no Use question q

| X3

H(X) \ Choose a g from

the question set to
“maximize the difference

()
|X1 |H(Xl(q))+ H(X;q))

Xl(q) ng) X X

The CART algorithm

1)
2)

4)

Question set: create a set of all possible YES/NO questions.

Initialization: initialize a tree with only one node which consists
of all available training samples.

Splitting nodes: for each node in the tree, find the best splitting
question which gives the greatest entropy reduction.

Go to step 3) to recursively split all its children nodes unless it

meets certain stop criterion, e.g., entropy reduction is below a
pre-set threshold OR data in the node is already too little.

CART method is widely used in machine learning and data mining:

1. Handle categorical data in data mining;

2. Acoustic modeling (allophone modeling) in speech recognition;
3. Letter-to-sound conversion;

4. Automatic rule generation

5. etc.

Dept. of CS, York Univ.
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Optimization of objective function (I)
- Optimization:
— Set up an objective function Q) ;

— Maximize or minimize the objective function with respect to
the variable(s) in question.

- Maximization (minimization) of a function:
— Differential calculus;
* Unconstrained maximization/minimization

Q=f(x>:—d£ix)=o:»x:?

sz(xl,xz,...’xN):M

dx,

=0=7?

— Lagrange Optimization:

» Constrained maximization/minimization
0= f(x,,%,,--,x,) with constraint g(x,,x,,-:,x,)=0
Q':f(lexZ?”.’xN)+/1-g(xl’x2""5xN)

90 099 _,.. 99 99",
ax, ax, dxy oA

Karush-Kuhn-Tucker (KKT) conditions

- Primary problem:
min  f(X)
subject to
g.(x)<0 (i=1,--,m)
h(x)=0  (j=1.n)

- Introduce KKT multipliers:
— For each inequality constraint: 1, (i=1:--,m)

— For each equality constraint: A (=1,,m)

1
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Karush-Kuhn-Tucker (KKT) conditions

- Dual problem:

— if x* is local optimum of the primary problem, x*
satisfies:

m [

VA + D u Ve (x)+ D AVh,(x)=0
i=1 j=1

=20 (i=1:-,m)

g, (x)=0 (i=1,--,m)

- The primary problem can be alternatively solved by the
above equations.

Optimization of objective function (II)

- Gradient descent (ascent) method:

Q = f(xlaxza'“’xN)
For any x,, start from any initial value x°

1
xi(n+ ) — xi(”) +e. Vxl.f(xeZ’. . .,xN) |Xi:x§n)

— af(x17x27”'9xN)
0 x,

)

where inf(xl,xz,---,xN)

— Step size is hard to determine
— Slow convergence
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Optimization of objective function (II)

- Newton’ s method

0=f(x)

Given any initial value x, o

1
f(X)zf(X0)+Vf(X0)(X—XO)’ +E(X'Xo)tH(X'Xo)

P P W)
a? 0x,0x, dx,0xy
Pfw P P W
H= ox;0x, ox? dx,0xy
P P P
0x0xy 0x,0xy ol

X =x,—-H™" Vf(x,)

— Hessian matrix is too big; hard to estimate

— Quasi-Newton’ s method: no need to compute Hessian matrix; quick
update to approximate it.

Optimization Methods

- Convex optimization algorithms:
— Linear Programming

— Quadratic programming (nonlinear
optimization)

— Semi-definite Programming
- EM (Expectation-Maximization) algorithm.

- Growth-Transformation method.
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Other Relevant Topics

- Statistical Hypothesis Testing
— Likelihood ratio testing

- Linear Algebra:
— Vector, Matrix;
— Determinant and matrix inversion;
— Derivatives of matrices;
— etc.

- A good on-line matrix reference manual
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/
http://www.psi.toronto.edu/matrix/matrix.html
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