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      Pattern Classification (I)  

Outline 
·  Pattern Classification Problems 

·  Bayesian Decision Theory 
–  How to make the optimal decision? 

·  Generative models: 
–  Maximum a posterior (MAP) decision rule: leading to 

minimum error rate classification. 
–  Model estimation: maximum likelihood, Bayesian learning, 

discriminative training, etc. 

·  Discriminative models: building classifier based on Discriminant 
–  Linear-Discriminant-Functions-based classifier 
–  Support vector machines (SVM), large-margin classifiers 
–  Neurual Networks 
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Pattern Classification Problem 

·  Given a fixed set of finite number of classes: ω1, ω2, … , ωN. 
·  We have an unknown pattern/object  P without its class identity. 
·  BUT we can measure (observe) some feature(s) X about P: 

–  X  is called feature or observation of the pattern P. 
–  X can be scalar or vector or vector sequence 
–  X can be continuous or discrete  

·  Pattern classification problem:  X  ωi 
–  Determine the class identity for any a pattern based on its 

observation or feature. 
·  Fundamental issues in pattern classification 

–  How to make an optimal classification? 
–  In what sense is it optimal? 

Examples of pattern classification(I) 

·  Speech recognition: 
–  Pattern: voice spoken by a human being 
–  Classes: language words/sentences used by the speaker 
–  Features: speech signal characteristics measured by a 

microphone  a sequence of feature vectors 
•  Each vector: continuous, high-dimensional, real-valued 

numbers 

·  Natural language understanding: 
–  Pattern: written or spoken languages of human  
–  Classes: all possible semantic meanings or intentions 
–  Features: the used words or word-sequences (sentences) 

•  Discrete, scalars or vector 
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Examples of pattern classification(II) 
·  Image understanding:  

–  Pattern: given images 
–  Classes: all known object categories 
–  Features: color or gray scales in all pixels 

•  Continuous, multiple vectors/matrix 
–  Examples: face recognition, OCR (optical character recognition). 

·  Gene finding in bioinformatics: 
–  Pattern: a newly sequenced DNA sequence 
–  Classes: all known genes 
–  Features: all nucleotides in the sequence 

•  Discrete; 4 types (adenine, guanine, cytosine, thymine) 
·  Protein classification in bioinformatics: 

–  Pattern: protein primary 1-D sequence 
–  Classes: all known protein families or domains 
–  Features: all amino acids in the sequence: discrete; 20 types 

Bayesian Decision Theory(I) 
·  Bayesian decision theory is a fundamental statistical approach to 

all pattern classification problems. 
·  Pattern classification problem is posed in probabilistic terms. 

–  Observation X is viewed as random variables (vectors,…) 
–  Class id ω is treated as a discrete random variable, which could 

take values ω1, ω2, … , ωN. 
–  Therefore,  we are interested in the joint probability distribution 

of X and ω which contains all info about X and ω. 

·  If all the relevant probability values and densities are known in the 
problem (we have complete knowledge of the problem), Bayesian 
decision theory leads to the optimal classification 

–  Optimal  Guarantee minimum average classification error 
–  The minimum classification error is called the Bayes error. 

)|()(),( ωωω XppXp ⋅=
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Bayesian Decision Theory(II) 
·  In pattern classification, all relevant probabilities mean: 

–  Prior probabilities of each class P(ωi) (i=1,2,… ,N): how likely 
any a pattern comes from each class before observing any 
features  prior knowledge from previous experience 

•  All priors sum to one:  

–  Class-conditional probability density functions of the observed 
feature, X, p(X | ωi) (i=1,2,… ,N): how the feature distributes for 
all patterns belonging to one class ωi . 

•  If X is continuous, p(X | ωi) is a continuous p.d.f. distribution 
For every class ωi:  

•  If X is discrete, p(X | ωi) is discrete probability mass function 
(p.m.f.) distribution. For every class ωi:  

∑
=

=
N

i
iP

1
1)(ω

∫ =⋅
X

i XXp 1d)|( ω

∑ =
X

iXp 1)|( ω

Example of class-conditional p.d.f. 

p(x|ω2)  

p(x|ω1)  

x=11.8 
Figure from Duda et. al., 
Pattern classification 
John Wiley & Sons®, Inc. 
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Bayes Decision Rule: 
Maximum a posterior (MAP) (I) 
·  If not observe any feature of an incoming unknown pattern P, 

classify it based on prior knowledge only 

–  Roughly guess it as the class with largest prior probability 

·  If observe some features X of the unknown patter P, we can 
convert the prior probability P(ωi) into a posterior probability 
based on the Bayes theorem: 
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Bayes decision rule: 
Maximum a posterior (MAP) (II) 

·  Where 
–  Prior P(ωi): probability of receiving a pattern from class ωi 

before observing anything.  (prior knowledge) 
–  Likelihood p(X | ωi): probability of observing feature X if assume 

X comes from a pattern in class ωi. (if assume X is given, treat it 
as a function of ωi, it is called likelihood function) 

–  Posterior p(ωi | X): probability of getting a pattern from class ωi 
after observing its features as X.  

–  Evidence p(x): a scalar factor to guarantee posterior probabilities 
sum to one regarding ωi . 
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Bayes decision rule: 
Maximum a posterior (MAP) (II) 

·  If we observe some features X of an unknown pattern, the 
observation can convert the prior into posterior. Intuitively, we can 
class the pattern based on the posterior probabilities, resulting in 
the maximum a posterior (MAP) decision rule, also called Bayes 
decision rule. 

·  For an unknown pattern P, after observing some features X, we 
classify it into the class with the largest posterior probability: 
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The MAP decision rule is optimal (I) 

·  How well the MAP decision rule behaves?? 

·  Optimality: assume we have complete knowledge, including P(ωi) 
and p(X | ωi) (i=1,2,… ,N), the MAP decision rule is optimal to 
classify patterns, which means it will achieve the lowest average 
classification error rate. 

·  Proof of optimality of the MAP rule:  
–  Given a pattern P, if its true class id is ωi, but we classify it as 
ωP, then the classification error is counted as l(ωP | ωi): 

      which is also known as 0-1 loss function. 
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·  Proof of optimality of the MAP rule (cont’) 
–  For a pattern P, after observing X, the posterior p(ωi | X) is the 

probability that the true class id of P is ωi. Thus the expected 
(average) classification error associated with classifying P as ωP 
is calculated: 

–  The optimal classification is to minimize the above average 
classification error, i.e., if observing X, we classify P as ωP to 
minimize R(ωP|X)   maximize p(ωP|X)  

      the MAP decision rule is optimal, which achieves the minimum 
average average error rate. The minimum error is called Bayes 
error. 

The MAP decision rule is optimal (II) 
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The MAP decision rule 
·  A general decision rule is a mapping function, given any an 

observation X, output a class id ωP:  X ωP 

·  If we totally have N classes, a decision rule will partition the entire 
feature space of X into N different regions, O1, O2, … , ON. If X is 
located in the region Oi, we classify it as class ωi . 

·  Each region Oi could consist of many contiguous areas. 
·  The MAP decision rule (the Bayes decision rule) is optimal among 

all possible decision rules in terms of minimizing average 
classification errors conditional on that we have complete and 
precise knowledge about the underlying problem. 

Feature space 

X 

Class ω1 

Class ω2 

Class ωN 
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The MAP decision rule example 

O2 O2 O1 O1 Figure from Duda et. al., 
Pattern classification 
John Wiley & Sons®, Inc. 

Classification Error Probability  
of a decision rule 

·  Assume N-class problem, any a decision rule partition the feature 
space into N regions, O1, O2, … , ON.  

·                         denotes the probability of the observation X of a 
pattern (its true class id is ωj) falls in the region Oi. 

·  The overall classification error probability of the decision rule is: 
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Example of Error Probability in 2-class case  

Figure from Duda et. al., 
Pattern classification 
John Wiley & Sons®, Inc. Error ω2  ω1 Error ω1  ω2 

Bayes Error 
·  Bayes error: error probability of the Bayes (MAP) decision rule. 

·  Since Bayes decision rule guarantees the minimum error, the 
Bayes error is the lower bound of all possible error 
probabilities. 

·  It is difficult to calculate the Bayes error, even for the very 
simple cases because of discontinuous nature of the decision 
regions in the integral, especially in high dimensions. 

·  Some approximation methods to estimate an upper bound. 
–  Chernoff bound 
–  Bhattacharyya bound 

·  Evaluate on an independent test set. 
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Example: Bayes decision for 
independent binary features 

·  Bayes decision rule (the MAP rule) is also applicable when 
feature X is discrete.  

·  A simple case (Binomial model): 2-class (ω1, ω2), feature vector 
is d-dimensional vector, whose components are binary-valued 
and conditionally independent.  
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Example: Bayes decision for 
independent binary features 

·  The MAP decision rule: 
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Missing features/data (I) 

·  If we know the full probability structure of a problem, we can 
construct the optimal Bayes decision rule. 

·  In some practical situations, for some patterns, we can’t observe 
the full feature vector described in the probability structure. Only 
partial information of the feature vector is observed, but some 
components are missing.  

·  How to classify such corrupted inputs to obtain minimum average 
error? 

·  Let the full feature vector X=[Xg,Xb], Xg represents the observed or 
good features, Xb represents the missing or bad ones. 

·  In this case, the optimal decision rule is constructed based on the 
posterior, p(ωi |Xg), as follows: 
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Optimal Bayes decision rule  
is not achievable in practice 

·  The optimal Bayes decision rule is not feasible in practice. 
–  In any practical problem, we can not have a complete 

knowledge about the problem. 
–  e.g., the class-conditional probability density functions (p.d.f.),          

p(X | ωi),  are always unavailable and extremely hard to 
estimate. 

·  However, possible to collect a set of sample data (a set of feature 
observations) for each class in question. 

–  The sample data are always far from enough to estimate a 
reliable p.d.f. by using sample data themselves ONLY, e.g., 
some nonparametric methods  sampling density / histogram. 

·  Question: How to build a reasonable classifier based on a           
limited set of sample data, instead of the true p.d.f.’s? 

Statistical Data Modeling 
·  For any real problem, the true p.d.f.’s are always unknown, neither the 

function form nor the parameters. 
·  Our approach – statistical data modeling : based on the available sample 

data set, choose a proper statistical model to fit into the available data set. 
–  Data Modeling stage: once the statistical model is selected, its 

function form becomes known except a set of model parameters 
associated with the model are unknown to us. 

–  Learning (training) stage: the unknown parameters can be estimated 
by fitting the model into the data set based on certain estimation 
criterion.  

•  the estimated statistical model (assumed model format + estimated 
parameters) will give a parametric p.d.f. to approximate the real but 
unknown p.d.f. of each class. 

–  Decision (test) stage: the estimated p.d.f.’s are plugged into the 
optimal Bayes decision rule in place of the real p.d.f.’s                       
    plug-in MAP decision rule 

•  Not optimal any more but performs reasonably well in practice 
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Data modeling 

Estimated model (p.d.f.) for class ω2 
 pλ2(x) 

Estimated model (p.d.f.) for class ω1 

pλ1(x) 

Plug-in MAP decision rule 

·  Once the statistical models are estimated, they are treated 
as if they were true distributions of the data, and plug into 
the form of the optimal Bayes (MAP) decision rule in place 
of the unknown true p.d.f.’s. 

·  The plug-in MAP decision rule:  
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Some useful models(I) 
·  A proper model must be chosen based on the nature of observation 

data. 
·  Some useful statistical models for a variety of data 

–  Normal (Gaussian) distribution  
  uni-modal continuous feature scalars 

–  Multivariate normal (Gaussian) distribution 
     uni-modal continuous feature vectors 
–  Gaussian Mixture models (GMM)  
      continuous feature scalars/vectors with multi-modal 

distribution nature 
     For speaker recognition/verification 
       distribution of speech features over a large population 
 

Some useful models (II) 
·  Some useful models (cont’d) 

–  Markov chain model: discrete sequential data 
•  N-gram model in language modeling 

–  Hidden Markov Models (HMM’s): ideal for various kinds of 
sequential observation data; provides better modeling 
capability than simple Markov chain model. 

•  Model speech signals for recognition (one of the most 
successful story of data modeling)  

•  Model language/text data for part-of-speech tagging, 
shallow language understanding, etc. 

•  Model biological data (DNA & protein sequence): profile 
HMM. 

•  Lots of other application domains. 
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Some useful models (III) 
·  Some useful models (cont’d) 

–  Random Markov Field: multi-dimensional spatial data 
•  Model image data: e.g., used for OCR, etc. 
•  HMM is a special case of random Markov field 

–  Graphical models (a.k.a., Bayesian networks, Belief networks) 
•  High-dimensional data (discrete or continuous) 
•  To model a very complex stochastic process 
•  Automatically learn dependency from data 
•  Used widely in machine learning, data mining 
•  HMM is also a special case of graphical model 

·  Neural networks, support vector machine (SVM) DON’T fit here. 
–  Not to model the distribution (p.d.f.) of data directly. 
–  Discriminative method: model the boundaries of data sets 

Generative vs. discriminative  
models 

·  Posterior probability p(ωi|X)  plays the key role in 
pattern classification. 

–  Generative Models: focus on probability distribution 
of data 

           p(ωi|X) ~  p(ωi) · p(X| ωi) 
                         ≈ p’(ωi) · p’(X| ωi)      (the plug-in MAP rule) 

–  Discriminative Models: directly model discriminant 
function: 

          p(ωi|X) ~  gi(X) 
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Pattern classification based on 
Discriminant Functions (I) 

·  Instead of designing a classifier based on probability distribution of 
data, we can build an ad-hoc classifier based on some discriminant 
functions to model class boundary info directly. 

·  Classifier based on discriminant functions: 
–  For N classes, we define a set of discriminant functions gi(X) 

(i=1,2,…,N), one for each class. 
–  For an unknown pattern with feature vector Y, the classifier 

makes the decision as 

–  Each discriminant function gi(X) has a pre-defined function form 
and a set of unknown parameters θi, rewrite it as gi(X ; θi ). 

–  Similarly θi (i=1,2,…,N) need to be estimated from some training 
data. 

)(maxarg Ygi
i

Y =ω

Pattern classification based on 
Discriminant Functions (II) 

·  Some common forms for discriminant funtions: 
–  Linear discriminant function: 

–  Quadratic discrimiant function: (2nd order) 
–  Polynomial discriminant function: (N-th order) 
–  Neural network: (arbitrary nonlinear functions) 
–  Optimal discriminant functions: optimal MAP 

classifier is a special case when choosing 
discriminant functions as class posterior 
probabilities. 

0)( wXwXg t +⋅=
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Pattern classification based on 
Discriminant Functions (III) 

·  Unknown parameters of discriminant functions are 
estimated by some gradient descent method to 
optimize an objective function: 

–  Linear regression: Achieving a good mapping.  

–  Logistic regression: Minimizing empirical 
classification errors. 

–  support vector machine (SVM): Maximizing 
separation margin: 

Linear Regression 

·  Find a good mapping from X to y 

Label: +1 Label: -1 
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Linear Regression 
·  Find a good mapping from X to y: 

·  Linear regression does NOT work well for 
classification 
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Logistic Regression 
·  Counting errors in training samples. 
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Large-Margin Classifier: 
Support Vector Machine (SVM) 

larger margin 

Support Vector Machine (I) 

·  The decision boundary H should be as far away 
from the data of both classes as possible 

–  We should maximize the margin, m 

Class 1 

Class 2 

m 

Because the perpendicular 
distance from H1, H2 to 
the origin is |1-b|/||w|| 
and |-1-b|/||w|| 

 

H1 

H2 
H 
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Support Vector Machine (II) 
·  The decision boundary can be found by solving the 

following constrained optimization problem: 

·  Convert to its dual problem: 

–  This is a standard quadratic programming (QP) problem. 

www T=2||||

w* = α i yixi
i
∑

Linearly Non-Separable cases 

·  We allow “error” xi in classification  soft-margin SVM 

Class 1 

Class 2 
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Support Vector Machine (III) 
·  Soft-margin SVM can be formulated as: 

·  It can be converted to its dual form. 
·  Soft-margin SVM is equivalent to the following cost function: 

w* = min
w,ξi

1
2 || w ||2 + C ⋅ ξi
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Support Vector Machine (IV) 

·  For nonlinear separation boundary: 
–  use a Kernel function 
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X 

Neural Network 
·  Feed-forward multilayer perceptron (MLP) 
·  Error back-propagation (BP) 

X1 

W 

X2 

X2 = l(X1W )

l(x) = 1
1+ e−σ x


