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Model Parameter Estimation 
·  Maximum Likelihood (ML) Estimation: 

–  ML method: most popular model estimation 
–  EM (Expected-Maximization) algorithm 
–  Examples: 

•  Univariate Gaussian distribution 
•  Multivariate Gaussian distribution 
•  Multinomial distribution 
•  Gaussian Mixture model 
•  Markov chain model: n-gram for language modeling 
•  Hidden Markov Model (HMM) 

·  Discriminative Training 
–  Maximum Mutual Information (MMI)  
–  Minimum Classification Error (MCE)  
–  Large Margin Estiamtion (LME) 

·  Bayesian Model Estimation: Bayesian theory 
·  MDI (Minimum Discrimination Information)  

alternative model estimation method 
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Discriminative Training(I): Maximum 
Mutual Information Estimation (1) 

·  The model is viewed as a noisy data generation channel 
 class id ω  observation feature X. 

·  Determine model parameters to maximize mutual information 
between ω and X. (close relation between ω and X) 
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Discriminative Training(I): Maximum 
Mutual Information Estimation (2) 

·  Difficulty: joint distribution p(ω,X) is unknown. 
·  Solution: collect a representative training set (X1, ω1), (X2, ω2), …,  
    (XT, ωT) to approximate the joint distribution. 
 
 
 
 
 
 
 

·  Optimization:  
–  Iterative gradient-ascent method 
–  Growth-transformation method 
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Discriminative Training(II): Minimum 
Classification Error Estimation (1) 

·  In a N-class pattern classification problem, given a set of training 
data, D={ (X1, ω1), (X2, ω2), …, (XT, ωT)}, estimate model parameters 
for all class to minimize total classification errors in D. 
–  MCE: minimize empirical classification errors 

·  Objective function  total classification errors in D 
–  For each training data, (Xt, ωt), define misclassification 

measure: 

 
or 
 
 
 
   if d(Xt, ωt)>0, incorrect classification for Xt  1 error 
   if d(Xt, ωt)<=0, correct classification for Xt  0 error 
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Discriminative Training(II): Minimum 
Classification Error Estimation (2) 

·  Soft-max: approximate d(Xt, ωt) by a differentiable 
function: 

or 
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Discriminative Training(II): Minimum 
Classification Error Estimation (3) 

·  Error count for one data, (Xt, ωt),  is  
    H(d(Xt, ωt)), where H(.) is step function. 
·  Total errors in training set: 

·  Step function is not differentiable, approximated by a sigmoid 
function  smoothed total errors in training set.   
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a>0 is a parameter to control its shape. 

Discriminative Training(II): Minimum 
Classification Error Estimation (3) 

·  MCE estimation of model parameters for all classes: 

·  Optimization: no simple solution is available 
–  Iterative gradient descent method. 
–  GPD (generalized probabilistic descent) method. 
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The MCE/GPD Method 
·  Find initial model parameters, e.g., ML estimates 

·  Calculate gradient of the objective function 

·  Calculate the value of the gradient based on the 
current model parameters 

·  Update model parameters 

·  Iterate until convergence  
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How to calculate gradient? 

·  The key issue in MCE/GPD is how to set a proper 
step size experimentally. 
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Overtraining (Overfitting) 
·  Low classification error rate in training set does not always 

lead to a low error rate in a new test set due to overtraining. 

Measuring Performance of MCE 

·  When to converge: monitor three quantities in the MCE/GPD 
–  The objective function 
–  Error rate in training set 
–  Error rate in test set 
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Large Margin Estimation 

model Λ1 model Λ2 

separation boundary  F(X|Λ1)-F(X| Λ2)=0 

Large-Margin Classifier 
 

original separation boundary  F(X|Λ1)-F(X| Λ2)=0 

Λ1 

Λ’1 

Λ2 

Λ’2 

new separation boundary  F(X|Λ’1)-F(X|Λ’2)=0 
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How to define  
separation margin? (1) 

·  In 2-class separable problem:  
–  For a data token, x1, of class Λ1 

–  For a data token, x2, of class Λ2 

)|ΛF(x)|ΛF(xxd 21111)( −=

)|ΛF(x)|ΛF(xxd 12222)( −=

> 0 

> 0 

How to define  
separation margin? (2) 

·  Extend to multiple-class problem:  
–  N classes Λ1, Λ2, …, ΛN, 

–  For a data token, xi, of class Λi 
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Large Margin Estimation 
·  An N-class problem: each class is represented by one 

model 
  
·  Given a training set D, define a subset, called support 

token set S, based on initial model as: 

·  Large-Margin Estimation (LME): 

},,,{ 21 NΛΛΛ= Λ

S = {Xi | Xi ∈D and 0 ≤ d(Xi ) ≤ ε}
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Bayesian Theory 
·  Bayesian methods view model parameters as random variables 

having some known prior distribution. (Prior specification) 
–  Specify prior distribution of model parameters θ as p(θ). 

·  Training data D allow us to convert the prior distribution into a 
posteriori distribution. (Bayesian learning) 

·  We infer or decide everything solely based on the posteriori 
distribution. (Bayesian inference) 
–  Model estimation: the MAP (maximum a posteriori) estimation 
–  Pattern Classification: Bayesian classification 
–  Sequential (on-line, incremental) learning 
–  Others: prediction, model selection, etc. 
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Bayesian Learning 
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θ
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The MAP estimation of  
model parameters 

·  Do a point estimate about θ based on the posteriori distribution 

·  Then θMAP is treated as estimate of model parameters (just like ML 
estimate). Sometimes need the EM algorithm to derive it. 

·  MAP estimation optimally combine prior knowledge with new 
information provided by data. 

·  MAP estimation is used in speech recognition to adapt speech 
models to a particular speaker to cope with various accents 
–  From a generic speaker-independent speech model  prior 
–  Collect a small set of data from a particular speaker 
–  The MAP estimate give a speaker-adaptive model which suit 

better to this particular speaker. 
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Bayesian Classification 
·  Assume we have N classes, ωi (i=1,2,…,N), each class has a class-

conditional pdf p(X|ωi,θi) with parameters θi.  
·  The prior knowledge about θi is included in a prior p(θi). 
·  For each class ωi, we have a training data set Di. 
·  Problem: classify an unknown data Y into one of the classes. 
·  The Bayesian classification is done as: 
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Recursive Bayes Learning 
(Sequential Bayesian Learning)  

·  Bayesian theory provides a framework for on-line learning (a.k.a. 
incremental learning, adaptive learning).  

·  When we observe training data one by one, we can dynamically 
adjust the model to learn incrementally from data. 

·  Assume we observe training data set D={X1,X2,…,Xn} one by one, 
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likelihoodpriorposteriori ×∝Learning Rule: 

Knowledge about  
Model at this stage 

Knowledge about  
Model at this stage 

Knowledge about  
Model at this stage 

Knowledge about  
Model at this stage 
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How to specify priors 
·  Noninformative priors 
–  In case we don’t have enough prior knowledge, just 

use a flat prior at the beginning. 

·  Conjugate priors: for computation convenience 
–  For some models, if their probability functions are a 

reproducing density, we can choose the prior as a 
special form (called conjugate prior), so that after 
Bayesian leaning the posterior will have the exact 
same function form as the prior except the all 
parameters are updated.  

–  Not every model has conjugate prior. 

Conjugate Prior 
·  For a univariate Gaussian model with only unknown mean: 

·  If we choose the prior as a Gaussian distribution (Gaussian’s 
conjugate prior is Gaussian) 

·  After observing a new data x1, the posterior will still be Gaussian: 
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The sequential  MAP Estimate  
of Gaussian  

·  For univariate Gaussian with unknown mean, the 
MAP estimate of its mean after observing x1: 

·  After observing next data x2: 
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