CSE 1570 Creating Vectors and Matrices

Instructor: Aijun An Department of Computer Science and Engineering York University <u>aan@cse.yorku.ca</u>

http://www.cse.yorku.ca/course/1570

Outline

- What are vectors and matrices?
- Creating a vector
- Creating a matrix

Vectors and Matrices

A vector is a matrix of

- size 1 × n (for row vector) or
- size **n** × 1 (for column vector),
- where **n** is the number of elements in the vector
- A single value (called *scalar value*) is a vector with one element and a matrix of size 1×1.

Creating a	Vector
------------	--------

Column vector:
scores=[87;65;98;45;76]
Separator is a <i>semicolon</i> .
Output of the above command:
scores =
87
65
98
45
76

Creating a Vector with Shorthand

```
• Examples
>> va=linspace(0,8,6)
va =
0 1.6000 3.2000 4.8000 6.4000 8.0000
>> va=linspace(20, 2, 4)
va =
20 14 8 2
```


	Some Built-in Functions for Vectors Assume A is a vector:				
	Function	Description	Example		
	mean(A)	Returns the mean value of the elements in A	>> A=[5 9 2 4] >> mean(A) ans = 5		
	median(A)	Returns the median value of elements in A	>> A=[5 9 2 4] >> median(A) ans = 4.5000		
	sort(A)	Output the elements in A in value ascending order	>> A=[5 9 2 4] >> sort(A) ans = 2 4 5 9		
25					

length(A) Returns the number of elements in A >> lengt ans =	

Exercise 5

Enter the following test scores into a vector s and calculate the highest, lowest and average score. Rank the score in ascending order:

87, 65, 98, 45, 76, 65, 77, 56, 82

Commands:

s=[87, 65, 98, 45, 76, 65, 77, 56, 82]; Highest=max(s), Lowest=min(s)

Average=mean(s), sort(s)

Output:

Outline

- What are vectors and matrices?
- Creating a vector
- Creating a matrix

Creating a Matrix				
			y assigning the elements le. Can be done in several	
1. Using ";	" to sep	arate row	/s:	
	nts ;		w elements; 2 nd row elements;; last row Within a row, the elements can be separated by either space or comma.	
>> a=[5	35 43;	4 76 8	31; 21 32 40]	
a =			Note that all the	
5	35	43	rows must have the	
4	76	81	same number of	
29 21	32	40	elements!	

	Creating a Matrix							
3.	Using the create row				for crea	ting vec	tors to	
	Example: >> a=[1: 67	2:11;	0:5:25 8 4 13	-	pace(1	0,60,6)	;	
	a =							
	1	3	5	7	9	11		
	0	5	10	15	20	25		
	10	20	30	40	50	60		
	67	2	43	68	4	13		
31							ws must have f elements!]

	(Creating	a Matrix	
			he elements can be math variables and functions.	
>>	<pre>kample: a=2; b=3; mat=[a^b; 1:3]</pre>		<pre>p(a); linspace(3,9,3);</pre>	
ma	.t =			
	8.0000 3.0000 1.0000	10.0000 6.0000 2.0000	7.3891 9.0000 3.0000	
32				

Exercise 6

Use three ways to create a 4×5 matrix **M** in which the first two rows are 0's and the next two rows are 1's.

Solution 1: M=[0 0 0 0 0; 0 0 0 0; 1 1 1 1; 1 1 1 1;

```
Solution 2:
A=zeros(2,5); B=ones(2,5); M=[A;B]
```

Solution 3:

```
M=[linspace(0, 0, 5); linspace(0,0,5);
linspace(1,1,5); linspace(1,1,5)]
```

X is a matrix below:				
Function	Description	Example		
size(X)	Returns a row vector [m, n]	>> X=[6, 2, 3, 4; 2, 3, 19, 2 X= 6 2 3 4 2 3 19 2 >> size(X) ans = 2 4		
length(X)	Returns the larger of its number of rows and columns	<pre>>> X=[6, 2, 3, 4; 2, 3, 19, 2 X=</pre>		

Some Built-in Matrix Functions X is a 2-dimensional matrix below:				
Function	Description	Example		
max(X)	Returns a vector in which each element is the largest number in the corresponding column of x	>> X=[5 9;2 4;1 3]; >> max(X) ans = 5 9		
min(X)	Returns a vector in which each element is the smallest number in the corresponding column of x	>> X=[5 9;2 4;1 3]; >> min(X) ans = 1 3		
sum(X)	Returns a vector in which each element is the sum of the values in the corresponding column of x	<pre>>> X=[5 9;2 4;1 3]; >> sum(X) ans =</pre>		

X is a 2-dim	ensional matrix below:	
Function	Description	Example
mean(X)	Returns a vector in which each element is the average of the values in the corresponding column of x	>> X=[5 9;2 4;1 3]; >> mean(X) ans = 2.6667 5.3333
median(X)	Returns a vector in which each element is the median value of the corresponding column of x	>> X=[5 9;2 4;1 3]; >> median(X) ans = 2 4
sort(X)	Sort each column of X in value ascending order	<pre>>> X=[5 9;2 4;1 3]; >> sort(X) ans = 1</pre>

