CSE 1570
Creating Vectors and Matrices
Instructor: Aijun An
Department of Computer Science and Engineering
York University
aan@cse.yorku.ca
http://www.cse.yorku.ca/course/1570

Vectors and Matrices

Vectors and matrices are fundamental data structures that MATLAB uses to store and manipulate data.

A vector (also called one-dimensional array) is a list of numbers, placed in a row or a column.

- A row vector:

$$
87 \quad 6598 \quad 45 \quad 76
$$

- A column vector : 87

The individual items 65 98 45
in a vector are called
its elements.

Outline

- What are vectors and matrices?
- Creating a vector
- Creating a matrix

Vectors and Matrices

A vector is a matrix of

- size $\mathbf{1} \times \mathbf{n}$ (for row vector) or
- size $\mathbf{n} \times \mathbf{1}$ (for column vector),
where \mathbf{n} is the number of elements in the vector

A single value (called scalar value) is a vector with one element and a matrix of size $\mathbf{1 \times 1}$.

Creating a Vector

A vector is created by assigning the elements of the vector to a variable, which can be done in several ways:

1. Creating a vector from a known list of numbers
variable_name $=$ [vector elements]

- Row vector:
scores=[llllll 87654576$]$
or
scores=[87,65,98,45,76]
Separator is either space or a comma

Creating a Vector

- Column vector:
scores=[87;65;98;45;76]
Separator is a semicolon.
Output of the above command:
scores =
87
65
98
45
76

Example of Using a Vector

If we have created a row or column vector as follows:

```
scores=[87 65 98 45 76]
or
scores=[87;65;98;45;76]
```

Can calculate the average score using mean(scores)
Output from MATLAB:
ans =

$$
74.2000
$$

Exercise 1

Define a row vector x that has the elements:

$$
6,8 \times 3,81, \mathrm{e}^{2.5}, \sqrt{65}, \pi / 3, \log _{10} 23.5
$$

Command:

```
x=[6, 8*3, exp(2.5), sqrt(65), pi/3, log10(23.5)]
```

Output:
x $=$
$6.0000 \quad 24.0000 \quad 12.1825 \quad 8.0623 \quad 1.0472 \quad 1.3711$

Creating a Vector with Shorthand

2. Creating a vector with constant spacing by specifying the first element, the spacing and the last element:

- Constant spacing: the distance between adjacent elements is the same, such as:

19901992199419961998

- Command:

```
            variable_name = [m:q:n]
```

 or
 variable_name = m:q:n
 where \mathbf{m} is the first element, \mathbf{q} is the spacing, \mathbf{n} is the last element.

Creating a Vector with Shorthand

- Examples:
>> $y r=[1990: 2: 1998]$
$\mathrm{yr}=$
$\begin{array}{lllll}1990 & 1992 & 1994 & 1996 & 1998\end{array}$
>> $x=[2.1:-0.2: 1.5]$
$\mathrm{x}=$

$$
\begin{array}{llll}
2.1000 & 1.9000 & 1.7000 & 1.5000
\end{array}
$$

Creating a Vector with Shorthand

- If only two numbers are typed, the spacing is omitted. In this case, the spacing is 1 .

$$
\begin{array}{llllll}
\begin{array}{lllll}
\gg \\
z=[-3: 2] & & & \text { If spacing is omitted, the default is } 1 . \\
z= & -3 & -2 & -1 & 0
\end{array} & 1 & 2
\end{array}
$$

Creating a Vector with Shorthand

- If \mathbf{n} cannot be obtained by adding \mathbf{q} 's to m, the last element will be the last number that does not exceed \mathbf{n} (in the direction of change):

> Examples:

$$
\gg x=[5: 2: 10]
$$

$$
x=
$$

$$
\begin{array}{llllll}
& 5 & 7 & 9 & & \\
\gg & y=\left[\begin{array}{lrrr}
19: & -2: & 10
\end{array}\right] & & \\
y= \\
19 & 17 & 15 & 13 & 11
\end{array}
$$

Example of Using Vectors

Year	1990	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 8}$
Sales	8	6	12	18	17

If we would like to plot the Sales amount against the year using a bar chart, use the following:
>> year=[1990:2:1998];
>> sales=[8, 6, 12, 18, 17];
>> bar (year, sales)

Creating a Vector with Shorthand

3. Creating a vector with constant spacing by specifying the first and last elements and the number of elements:

- Using the linspace function:

- MATLAB automatically determines the correct spacing by:

$$
\frac{n-m}{k-1}
$$

```
Creating a Vector with Shorthand
    - Examples
    >> va=linspace \((0,8,6)\)
    va \(=\)
    \(\begin{array}{llllll}0 & 1.6000 & 3.2000 & 4.8000 & 6.4000 & 8.0000\end{array}\)
    >> va=linspace(20, 2, 4)
    va \(=\)
        \(20 \quad 14 \quad 8 \quad 2\)
```


Example of Using Vectors

Creating vectors using linspace is handy when plotting a function.

Plot $y=e^{x}$ over $0 \leq \mathrm{x} \leq 5$
>> $x=$ linspace $(0,5,30)$;
>> $y=e x p(x)$;
>> plot(x, y)

21

Exercise 4

Create a row vector z with 16 equally spaced elements in which the first element is 61 and the last element is 5 .

Command:
z=linspace (61, 5, 16)

Output:
z =
$61.000057 .266753 .5333, \ldots, 5.0000$
What if we want to create a column vector of these elements?

Creating a Vector with Shorthand

- You can omit the number of elements in linspace. Its default value is 100 .

```
>> u=linspace(0, 20)
```

u =
Columns 1 through 7
$\begin{array}{lllllll}0 & 0.2020 & 0.4040 & 0.6061 & 0.8081 & 1.0101 & 1.2121\end{array}$
Columns 8 through 14
$\begin{array}{lllllll}1.4141 & 1.6162 & 1.8182 & 2.0202 & 2.2222 & 2.4242 & 2.6263\end{array}$
Columns 99 through 100
$19.7980 \quad 20.0000$

The Transpose Operator

The transpose operator ('), when applied to a vector,

- converts a row vector into a column vector
- converts a column vector into a row vector

Example:
$\gg a a=\left[\begin{array}{lll}3 & 8 & 1\end{array}\right]$
aa $=$
$\begin{array}{lll}3 & 8 & 1\end{array}$
>> bb=aa'
bb $=$
3

Some Built-in Functions for Vectors
Assume A is a vector:
$\left.\begin{array}{l|l|ll}\text { Function } & \text { Description } & \text { Example } \\ \max (A) & \text { Returns the largest value in } A & \begin{array}{l}\gg A=\left[\begin{array}{lll}5 & 9 & 2\end{array}\right] \\ \gg \max (A)\end{array} \\ \text { ans }=\end{array}\right]$

Exercise 5

Enter the following test scores into a vector s and calculate the highest, lowest and average score. Rank the score in ascending order:

$$
87,65,98,45,76,65,77,56,82
$$

Commands:
$\mathrm{s}=[87,65,98,45,76,65,77,56,82]$;
Highest=max(s), Lowest=min(s)
Average=mean(s), sort(s)
Output:

Creating a Matrix

A matrix can be created by assigning the elements of the matrix to a variable. Can be done in several ways:

1. Using ";" to separate rows:

Some Built-in Functions for Vectors
Assume A is a vector:
$\left.\begin{array}{|l|l|l|}\text { Function } & \text { Description } & \text { Example } \\ \hline \text { length (A) } & \begin{array}{l}\text { Returns the number of } \\ \text { elements in } A\end{array} & \begin{array}{l}\gg \\ \gg \\ \text { ans length }\end{array} \text { (A) } \\ \text { ans } & 9 & 2\end{array}\right]$

Outline

- What are vectors and matrices?
- Creating a vector
- Creating a matrix

Creating a Matrix

2. Using "Enter" to separate rows:
variable_name=[1st row elements
$2^{\text {nd }}$ row elements
$3^{\text {rd }}$ row elements
last row elements]
Example:
>> $a=\left[\begin{array}{lll}5 & 35 & 43\end{array}\right.$

$$
47681
$$

2132401

Creating a Matrix

3. Using the shorthand methods for creating vectors to create rows of the matrix.

Example:
>> $a=[1: 2: 11 ; ~ 0: 5: 25 ; ~ l i n s p a c e(10,60,6) ;$
67243684 13]
$\mathrm{a}=$

1	3	5	7	9	11
0	5	10	15	20	25
10	20	30	40	50	60
67	2	43	68	4	13

Note that all the rows must have
the same number of elements!

Concatenating Matrices

4. Matrices can be joined together to form a bigger matrix

Example:
>> $\mathrm{F}=\left[\begin{array}{lll}10 & 11 & 12\end{array}\right]$;

>> $\mathbf{H}=[\mathrm{F} ; \mathrm{G}] \quad \mathrm{F}$ and \mathbf{G} must have the same number of columns

H =

10	11	12
13	14	15

What is the result of $\mathbf{A}=[\mathbf{H} ; \mathrm{F}]$?
What about $\mathrm{B}=[\mathrm{H}$; A$]$?

Creating a Matrix

Same as in creating vectors, the elements can be math expressions, and contains variables and functions.

Example:
>> $a=2 ; b=3 ; c=4$
>> mat=[a^b, c+a*b, exp(a); linspace(3,9,3); 1:3]
mat $=$
$8.0000 \quad 10.0000 \quad 7.3891$
$3.0000 \quad 6.0000 \quad 9.0000$
$1.0000 \quad 2.0000 \quad 3.0000$

32

Creating Special Matrices

The following built-in functions can be used to create special matrices:

- zeros (m, n) creates a $m \times \mathbf{n}$ matrix of zeros Example:
>> z=zeros $(3,4)$
z =

0	0	0	0
0	0	0	0
0	0	0	0

34

Creating Special Matrices

- $\mathbf{e y e (n)}$ can be used to create a $\mathbf{n} \times \mathbf{n}$ square matrix in which the diagonal elements are equal to 1 and the rest are 0 . Such a matrix is called identity matrix.

Example:
>> idn=eye(3)
idn $=$

1	0	0
0	1	0
0	0	1

Creating Special Matrix

- ones (m, n) creates a $m \times n$ matrix of ones

Example:
>> b=ones $(4,3)$
b $=$

1	1	1
1	1	1
1	1	1
1	1	1

Exercise 6

Use three ways to create a 4×5 matrix \mathbf{M} in which the first two rows are 0's and the next two rows are 1's.

Solution 1:
$\mathrm{M}=[00000 ; 00000 ; 11111$; 11111$]$
Solution 2:
A=zeros(2,5); B=ones(2,5); M=[A;B]
Solution 3:
$M=[\operatorname{linspace}(0,0,5)$; linspace $(0,0,5)$;
linspace $(1,1,5)$; ínspace $(1,1,5)$]

Some Built-in Matrix Functions

X is a 2-dimensional matrix below:

Function	Description	Example
$\max (\mathrm{X})$	Returns a vector in which each element is the largest number in the corresponding column of \mathbf{X}	```>> X=[5 9;2 4;1 3]; max(X) ans = 5 9```
$\min (\mathrm{X})$	Returns a vector in which each element is the smallest number in the corresponding column of \mathbf{X}	```>> X=[5 9;2 4;1 3]; >> min(X) ans = 1 3```
sum (X)	Returns a vector in which each element is the sum of the values in the corresponding column of \mathbf{X}	```>> X=[[5 9;2 4;1 3]; > sum(X) ans = 8 16```

Home Exercise

Given two lists of test scores of a group of students:

Midterm score	Final score
76	80
69	75
90	67
82	87
38	78
67	92

Create a matrix to contain the scores, and then calculate the maximum, minimum and average scores for midterm and final.

Some Built-in Matrix Functions

X is a matrix below:

Some Built-in Matrix Functions

X is a 2-dimensional matrix below:

Function	Description	Example
mean (X)	Returns a vector in which each element is the average of the values in the corresponding column of \mathbf{X}	```>> X=[5 9;2 4;1 3]; >> mean(X) ans = 2.6667 5.3333```
median(X)	Returns a vector in which each element is the median value of the corresponding column of \mathbf{X}	```>> X=[5 9;2 4;1 3]; >> median(X) ans = 2 4```
sort (X)	Sort each column of X in value ascending order	

[^0]
[^0]: Next Class
 Location: AP Labs (TEL 2027\&2032)

 Topics:

 - Addressing elements of matrices
 - Script files

