
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE 2311
Software Development Project

Wednesday, January 9, 2013

2

NSERC Undergraduate Student
Research Awards (USRA) 2013

•  Information session
•  Friday, January 11, 1:30–2:30
•  Lassonde 3033 (Comp Science & Eng building)

•  Duration and value of awards
•  16 weeks on a full-time basis (Apr 29 - Aug 16, 2013)
•  $4,500 from NSERC + at least $1,125 from the supervisor

•  Application deadline
•  Friday, January 25, 2013, 3:00PM
•  See www.cse.yorku.ca/undergrad/usra/ for procedure

3

NSERC Undergraduate Student
Research Awards (USRA) 2013
•  Eligibility

•  Canadian citizens or permanent residents
•  Full-time students in natural sciences and engineering
•  Completed 18 credits of their degree program by

December 31, 2012
•  A cumulative GPA of at least “B”

•  Program coordinator
•  Prof. Burton Ma, burton@cse.yorku.ca

•  For more info
•  See www.cse.yorku.ca/undergrad/usra/

4

Reading
•  Author: Ian Sommerville

•  Title: Software Engineering

•  Chapters 1-4

5

Software Engineering

•  Software Engineering is the science and
art of building significant software systems
that are:
1.  on time
2.  on budget
3.  with acceptable performance
4.  with correct operation

6

Software Engineering
•  The economies of all developed nations are dependent

on software.

•  More and more systems are software controlled.

•  Software engineering is concerned with theories,
methods and tools for professional software
development.

•  Software engineering expenditure represents a
significant fraction of the GNP of developed countries.

7

Software Costs

•  Software costs often dominate system costs.
The costs of software on a PC are often greater
than the hardware cost.

•  Software costs more to maintain than it does to
develop.

•  Software engineering is concerned with cost-
effective software development.

8

Software Products

•  Generic products
•  Stand-alone systems which are produced by

a development organization and sold on the
open market to any customer.

•  Customized products
•  Systems which are commissioned by a

specific customer and developed specially by
some contractor.

9

Software Product Attributes

•  Maintainability

•  Dependability

•  Efficiency

•  Usability

10

Importance of Product
Characteristics
•  The relative importance of these characteristics

depends on the product and the environment in
which it is to be used.

•  In some cases, some attributes may dominate
•  In safety-critical real-time systems, key

attributes may be dependability and
efficiency.

•  Costs tend to rise exponentially if very high
levels of any one attribute are required.

11

Efficiency Costs
Cost

Efficiency

12

The Software Process

•  Structured set of activities required to develop a
software system
•  Specification
•  Design
•  Validation
•  Evolution

•  Activities vary depending on the organization
and the type of system being developed.

•  Must be explicitly modeled if it is to be
managed.

13

Engineering Process Model
•  Specify: Set out the requirements and

constraints on the system.

•  Design: Produce a model of the system.

•  Manufacture: Build the system.

•  Test: Check the system meets the required
specifications.

•  Install: Deliver the system to the customer and
ensure it is operational.

•  Maintain: Repair faults in the system as they
are discovered.

14

Software Engineering is Different

•  Normally, specifications are incomplete.

•  Very blurred distinction between specification,
design and manufacture.

•  No physical realization of the system for testing.

•  Software does not wear out - maintenance
does not mean component replacement.

15

Generic Software Process Models
•  Waterfall

•  Separate and distinct phases of specification and
development

•  Evolutionary
•  Specification and development are interleaved

•  Formal Transformation
•  A mathematical system model is formally transformed to

an implementation

•  Reuse-based
•  The system is assembled from existing components

16

Waterfall Process Model
Requirements

definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

17

Evolutionary Process Model

Validation Final
version

Development Intermediate
versions

Specification Initial
version

Outline
description

Concurrent
activities

18

Process Model Problems
•  Waterfall

•  High risk for new systems because of specification and
design problems.

•  Low risk for well-understood developments using familiar
technology.

•  Prototyping
•  Low risk for new applications because specification and

program stay in step.
•  High risk because of lack of process visibility.

•  Transformational
•  High risk because of need for advanced technology and

staff skills

19

Hybrid Process Models
•  Large systems are usually made up of several sub-

systems.

•  The same process model need not be used for all
subsystems.

•  Prototyping for high-risk specifications.

•  Waterfall model for well-understood
developments.

20

Spiral Process Model

Risk
analys is

Risk
analys is

Risk
analys is

Risk
analysis Proto-

type 1

Prototype 2
Prototype 3

Opera-
tional
protoype

Concept o f
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code
Unit tes t

Integr ation
testAccep tance

testServ ice Develop, verify
next-level p roduct

Evaluate alternatives
iden tify, resolve risks

Determine ob jectives
alternatives and

constraints

Plan next phase

Integration
and test p lan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

21

Spiral Model Advantages
•  Focuses attention on reuse options.

•  Focuses attention on early error elimination.

•  Puts quality objectives up front.

•  Integrates development and maintenance.

•  Provides a framework for hardware/software
development.

22

Spiral Model Problems
•  Contractual development often specifies

process model and deliverables in advance.

•  Requires risk assessment expertise.

23

Process Visibility
•  Software systems are intangible so managers need

documents to assess progress.

•  Waterfall model is still the most widely used model.

24

Waterfall Model Documents
Activity Output documents
Requirements analysis Feasibility study, Outline requirements
Requirements definition Requirements document
System specification Functional specification, Acceptance test plan

Draft user manual
Architectural des ign Architectural specification, System test plan
Interface design Interface specification, Integration test p lan
Detailed design Design specification, Unit test plan
Coding Program code
Unit testing Unit test report
Module testing Module test report
Integration testing Integration test report, Final user manual
System testing System test report
Acceptance testing Final system plus documentation

25

Process Model Visibility

Process model Process visibility
Waterfall model Good visibility, each activity produces some

deliverable
Evolutionary
development

Poor visibility, uneconomic to produce
documents during rapid iteration

Formal
transformations

Good visibility, documents must be produced
from each phase for the process to continue

Reuse-oriented
development

Moderate visibility, it may be artificial to
produce documents describing reuse and
reusable components.

Spiral model Good visibility, each segment and each ring
of the spiral should produce some document.

26

Agile methods
•  Dissatisfaction with the overheads involved in design

methods led to the creation of agile methods. These
methods:
•  Focus on the code rather than the design;
•  Are based on an iterative approach to software development;
•  Are intended to deliver working software quickly and evolve this

quickly to meet changing requirements.

•  Agile methods are probably best suited to small/
medium-sized business systems or PC products.

27

Principles of agile methods

Principle Description

Customer involvement The customer should be closely involved throughout the
development process. Their role is provide and prioritise new
system requirements and to evaluate the iterations of the system.

Incremental delivery The software is developed in increments with the customer
specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognised and
exploited. The team should be left to develop their own ways of
working without prescriptive processes.

Embrace change Expect the system requirements to change and design the system
so that it can accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and in
the development process used. Wherever possible, actively work
to eliminate complexity from the system.

28

Problems with agile methods
•  It can be difficult to keep the interest of customers who

are involved in the process.

•  Team members may be unsuited to the intense
involvement that characterizes agile methods.

•  Prioritizing changes can be difficult where there are
multiple stakeholders.

•  Maintaining simplicity requires extra work.

•  Contracts may be a problem as with other approaches
to iterative development.

29

Extreme Programming

•  An agile development methodology

•  Created by Kent Beck in the mid-90s

•  A set of 12 key practices taken to their
“extremes”

The XP slides are based on a slide set by
Daniel Baranowski

30

What else is agile?
•  Adaptive Software Development

•  Crystal Methodologies

•  Dynamic Systems Development Method

•  Feature-Driven Development

•  SCRUM

•  And others

31

The 12 Practices
•  The Planning Game

•  Small Releases

•  Metaphor

•  Simple Design

•  Testing

•  Refactoring

•  Pair Programming

•  Collective Ownership

•  Continuous Integration

•  40-Hour Workweek

•  On-site Customer

•  Coding Standards

32

1 - The Planning Game
•  Planning for the upcoming iteration

•  Uses stories provided by the customer

•  Technical persons determine schedules, estimates,
costs, etc

•  A result of collaboration between the customer and the
developers

33

The Planning Game – Advantages
•  Reduction in time wasted on useless features

•  Greater customer appreciation of the cost of a feature

•  Less guesswork in planning

34

The Planning Game – Disadvantages

•  Customer availability

•  Is planning this often necessary?

35

2- Small Releases
•  Small in terms of functionality

•  Less functionality means releases happen more
frequently

•  Support the planning game

36

Small Releases – Advantages
•  Frequent feedback

•  Tracking

•  Reduce chance of overall project slippage

37

Small Releases – Disadvantages
•  Not easy for all projects

•  Not needed for all projects

•  Versioning issues

38

3 – Metaphor
•  The oral architecture of the system

•  A common set of terminology

39

Metaphor – Advantages
•  Encourages a common set of terms for the system

•  Reduction of buzz words and jargon

•  A quick and easy way to explain the system

40

Metaphor – Disadvantages
•  Often the metaphor is the system

•  Another opportunity for miscommunication

•  The system is often not well understood as a metaphor

41

4 – Simple Design
•  K.I.S.S.

•  Do as little as needed, nothing more

42

Simple Design – Advantages
•  Time is not wasted adding superfluous functionality

•  Easier to understand what is going on

•  Refactoring and collective ownership is made possible

•  Helps keeps programmers on track

43

Simple Design – Disadvantages
•  What is “simple?”

•  Simple isn’t always best

44

5 – Testing
•  Unit testing

•  Test-first design

•  All automated

45

Testing – Advantages
•  Unit testing promote testing completeness

•  Test-first gives developers a goal

•  Automation gives a suite of regression test

46

Testing – Disadvantages
•  Automated unit testing isn’t for everything

•  Reliance on unit testing isn’t a good idea

•  A test result is only as good as the test itself

47

6 – Refactoring
•  Changing how the system does something but not what

is done

•  Improves the quality of the system in some way

48

Refactoring – Advantages
•  Prompts developers to proactively improve the product

as a whole

•  Increases developer knowledge of the system

49

Refactoring – Disadvantages
•  Not everyone is capable of refactoring

•  Refactoring may not always be appropriate

•  Would upfront design eliminate refactoring?

50

7 – Pair Programming
•  Two Developers, One monitor, One Keyboard

•  One “drives” and the other thinks

•  Switch roles as needed

51

Pair Programming – Advantages
•  Two heads are better than one

•  Focus

•  Two people are more likely to answer the following
questions:
•  Is this whole approach going to work?
•  What are some test cases that may not work yet?
•  Is there a way to simplify this?

52

Pair Programming – Disadvantages

•  http://www.cenqua.com/pairon/

•  Many tasks really don’t require two programmers

•  A hard sell to the customers

•  Not for everyone

53

8 – Collective Ownership
•  The idea that all developers own all of the code

•  Enables refactoring

54

Collective Ownership – Advantages
•  Helps mitigate the loss of a team member leaving

•  Promotes developers to take responsibility for the
system as a whole rather than parts of the system

55

Collective Ownership - Disadvantages

•  Loss of accountability

•  Limitation to how much of a large system that an
individual can practically “own”

56

9 – Continuous Integration
•  New features and changes are worked into the system

immediately

•  Code is not worked on without being integrated for more
than a day

57

Continuous Integration - Advantages
•  Reduces to lengthy process

•  Enables the Small Releases practice

58

Continuous Integration – Disadvantages

•  The one day limit is not always practical

•  Reduces the importance of a well-thought-out
architecture

59

10 – 40-Hour Week
•  The work week should be limited to 40 hours

•  Regular overtime is a symptom of a problem and not a
long term solution

60

40-Hour Week – Advantage
•  Most developers lose effectiveness past 40-Hours

•  Value is placed on the developers well-being

•  Management is forced to find real solutions

61

40-Hour Week - Disadvantages
•  40-Hours is a magic number

•  Some may like to work more than 40-Hours

62

11 – On-Site Customer
•  Just like the title says!

•  Acts to “steer” the project

•  Gives quick and continuous feedback to the
development team

63

On-Site Customer – Advantages
•  Can give quick and knowledgeable answers to real

development questions

•  Makes sure that what is developed is what is needed

•  Functionality is prioritized correctly

64

On-Site Customer – Disadvantages
•  Difficult to get an On-Site Customer

•  The On-Site customer that is given may not be fully
knowledgeable

•  May not have authority to make many decisions

•  Loss of work to the customer’s company

65

12 – Coding Standards
•  All code should look the same

•  It should not possible to determine who coded what
based on the code itself

66

Coding Standards – Advantages
•  Reduces the amount of time developers spend

reformatting other peoples’ code

•  Reduces the need for internal commenting

•  Call for clear, unambiguous code

67

Coding Standards – Disadvantages
•  Degrading the quality of inline documentation

68

XP – Advantages
•  Built-In Quality

•  Overall Simplicity

•  Programmer Power

•  Customer Power

•  Synergy Between Practices

69

XP – Disadvantages
•  Informal, little, or no documentation

•  Scalability

•  Contract Issues

•  Misconception on the cost of change

•  Tailoring

70

Application – Advantageous
•  Highly uncertain environments

•  Internal projects

•  Joint ventures

71

Application – Disadvantageous
•  Large, complex environments

•  Safety critical situations

•  Well understood requirements

•  Distant or unavailable customer

72

Web resources
•  www.junit.org

•  www.xprogramming.com

•  www.extremeprogramming.org

•  www.refactoring.com

•  www.pairprogramming.com

73

Our project
•  Fully develop a system that translates guitar tablature

from ASCII to PDF

•  We will call it TAB2PDF

•  We will use an extreme programming approach
whenever possible

74

ASCII Tablature

75

PDF Tablature

76

To get started
•  Look at the sample input and output files posted on the

course website

•  Download the iText library for dynamically creating PDF
files
•  http://itextpdf.com

•  Attempt to create a Hello World PDF file

•  Lots of examples at the site above

77

Intentionally vague requirements
•  In a real software development project, requirements

are vague and ever-changing

•  The exact requirements will be refined iteratively by
meeting with the “customer” on a weekly basis

78

Teams
•  Teams are assigned randomly by the “manager”

•  As enrollment in the course changes in the first few
weeks, the “manager” will rearrange the teams

•  Same as a real software project!

79

Team 1
•  Chayka, Dmytro

•  D'Costa, Ryan

•  Mangal, Alistair

•  Pilay, Jorge

80

Team A
•  Carr, Matt

•  Choi, Youn

•  Dutta, Dev

•  Vieira Leite, Guilherme

81

Workload
•  This course requires 8-10 hours per week per student

•  Have to start working immediately

•  In the second hour of each lecture, each team will
present their progress to the instructor and receive
feedback
•  “Customer” on site!

82

Evaluation
•  15% - Midterm prototype + Presentation (due Mar 6)

•  10% - Requirements Document (due Apr 8)

•  10% - Design Document (due Apr 8)

•  10% - Testing Document (due Apr 8)

•  5% - User Manual (due Apr 8)

•  20% - Evaluation of final code (due Apr 8)

•  20% - Final presentation (due Apr 3)

•  10% - Participation (in class and at weekly
presentations)

