
2013-01-15 4:31 PMA Tutorial Introduction

Page 1 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

Table of contents

- Hello world
- Local variables, arithmetic
expressions and loops
- Character input and output

- File copying
- Character counting

- Arrays and objects
- Functions
- More focus on classes

- A rectangle is a sort of a
shape
- Matrices as objects
- Complex numbers

- Linked lists

This document gives a quick introduction into Eiffel.
The introduction covers the most basic elements
necessary to write programs in Eiffel.

Like stated by Brian Kernighan and Denis Ritchie in
their famous book "The C programming Language"
the best way to learn a programming language is to
write programs in it. Therefore the focus in this
introduction is to write simple but useful programs.
Most of the programs written in this introductory
section are just Eiffel versions of first programs of
the mentioned book from Kernighan and Ritchie.

The following is not an introduction into
programming but into writing programs in the Eiffel
language. A basic working knowledge for writing
programs in languages like C, C++ or java is
assumed.

Hello world
Our first program will just print the words

Hello, world

An Eiffel program doing this consists in

 class
 HELLO
 create
 make
 feature
 make
 do
 io.put_string ("Hello, world")
 io.put_new_line

The Eiffel Compiler / Interpreter (tecomp)

doc/lang/tutorial

A TUTORIAL INTRODUCTION

http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_0
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_1
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_2
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_3
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_4
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_5
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_6
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_7
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_8
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_9
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_10
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt#chapter_11
http://sourceforge.net/
http://tecomp.sourceforge.net/index.php?file=doc
http://tecomp.sourceforge.net/index.php?file=doc/lang
http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

2013-01-15 4:31 PMA Tutorial Introduction

Page 2 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 end
 end

All Eiffel code resides in classes. Each class has its
program text in a file. The source code of the above
class has to be written in a file named "hello.e" (all
in lowercase letters). Eiffel is not case sensitive.
However class names are usually written in
uppercase letters and feature names in lower case
letters.

The way to compile and execute an Eiffel program
depends on the system and the used compiler. The
information given here is valid for the eiffel
compiler tecomp running in a UNIX environment.

In order to compile the program, the compiler
needs some information. The information is given in
a ace-file. E.g. the above program can have the
ace-file "hello.ace" with the content

 root
 HELLO.make
 cluster
 "./"
 "`path_to_tecomp_installation'/library/kernel"
 end

In the current version of tecomp the path to your
tecomp installation has to be given as an absolute
or relative path. Future version will surely have
some way to give this information more
symbolically.

You can compile and execute the program by typing
the command

 tecomp hello.ace

and it will print

 Hello, world

Now some explanations to the program. An Eiffel
program consists of an arbitrary number of classes.
One of the classes has to be the root class and one
procedure has to be the root procedure. For the
above program the root class is named HELLO and

2013-01-15 4:31 PMA Tutorial Introduction

Page 3 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

the root procedure make.

The compiler needs to know where to find classes.
All classes reside in clusters which are usually
implemented by directories of the used operating
system. The above ace-file names the two clusters
"./" (i.e. the current directory) and
"`path_to_tecomp_installation'/library/kernel" (i.e.
the directory where the Eiffel kernel classes are
stored). The compiler searches for Eiffel classes in
these clusters (i.e. directories) and complains, if the
used classes in your program are not found in these
clusters. The set of all Eiffel classes found in the
clusters is called the universe.

The execution of an Eiffel program starts by
creating an object of its root type and calling its
root procedure (for the time being the words type
and class are used synonymously, they only differ
in case of generic classes/types).

The root procedure can create any number of other
objects and call any routine of any created object.

In Eiffel like in many modern languages the input is
in free format, i.e. any blanks, tabs and newlines in
the software text are not important. The
indentation is for readability for the human reader
and not for the compiler.

Names like class, create, feature, do and end
are keywords of the language. They are reserved.
No class, feature or variable can have a name
identical to a keyword.

Now lets look at the structure of the above Eiffel
program

 class
 HELLO -- the class name
 create
 make -- the creation procedure(s)
 feature
 ... -- the features of the class
 end

This skeleton says that we are defining a class with

2013-01-15 4:31 PMA Tutorial Introduction

Page 4 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

the name HELLO. Objects of type HELLO can only
be created by using the creation procedure make. All
features of the class are declared in the feature
block feature...end.

A feature is either a routine or an attribute. Our
simple program has only one feature named make.
The feature make is a routine. A routine can take
arguments and return a result. A routine which
does not return a result is called a command or a
procedure, routines with result are called queries.

the routine make is the creation procedure of the
class HELLO because make is listed in the set of
creation procedures (in HELLO it is the only one).

The code of make

 make
 do
 io.put_string ("Hello, world")
 io.put_new_line
 end

has only 2 statements. The statement
io.put_string("Hello, world") calls the feature io.
Every class in Eiffel can call io, because the feature
io of type STD_FILES is defined in the universal
class ANY which is implicitely inherited by every
class of an eiffel system. Since io returns an object
of type STD_FILES, features of STD_FILES can be
called.

STD_FILES has the feature put_string with a string
argument. The feature put_string is a command
because it does not return anything. It outputs its
string argument to standard output. The feature
put_new_line does just what it says.

The notion of a feature is fundamental in the Eiffel
language. Therefore some basics are explained
here.

A feature has two views. The user or client view
and the implementation view.

2013-01-15 4:31 PMA Tutorial Introduction

Page 5 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

In the client view we distinguish between queries
and commands. A query can take zero or more
arguments and has a return value. It is good
practice -- allthough not enforced by the language -
- that a query only gives the result without any side
effect. A command can also take zero or more
arguments and does not return anything. It is
supposed to change to state of the object.

In the implementation view we distinguish between
attributes and routines. The value of an attribute is
stored within the object. Calling an attribute does
not do any computation. It just returns the value of
the attribute. Routines do have a body and are
therefore computation elements. Routines are
queries or commands. In the implementation view
commands are also called procedures and queries
which are implemented by routines are also called
functions.

Therefore a query can be implemented by an
attribute or a function, a command has to be
implemented by a procedure.

A sequence of characters in double quotes, like
"Hello, world", is called a character string or a
string constant. Special characters like newline and
tab can be included into string constants by escape
sequences. E.g. %N and %T are the escape sequences
for newline and tab. Therefore we can also write

 io.put_string ("Hello, world%N")

giving the same output as

 io.put_string ("Hello, world")
 io.put_new_line

If you want to output large strings spanning over
several lines in exactly the same format as given in
the code, you can use verbatim strings. E.g.

 io.put_string ("[
 usage: tecomp options ace_file

 options

2013-01-15 4:31 PMA Tutorial Introduction

Page 6 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 -t{p,v,e}{0,1,2,3} trace parsing, validation,
 execution with level 0,1,2,3
 -ws{0,1,2,3} write statistics
]")

outputs your string exactly as formatted. Putting
the verbatim line sequence between "[and]"
removes the longest common whitespace prefix of
all lines (i.e. output the string left justified). Putting
the verbatim line sequence between "{ and }"
make an absolute verbatim copy without any
whitespace prefix removing.

Verbatim string constants are similar to here docs
encoutered in many UNIX shells.

If you want to write a string constant over several
lines without having the newlines embedded you
can use line wrapped strings. The statement

 io.put_string ("Hello, %
 %world")

gives exactly the same output as

 io.put_string ("Hello, world")

The whitespace between the two percent signs is
simply ignored in constructing the string constant.

The class ANY also has feature called print which
can print any object to default output. So the
shortest Hello world program has the form:

 class HELLO create make feature
 make
 do
 print ("Hello, world%N")
 end
 end

Local variables,
arithmetic expressions

2013-01-15 4:31 PMA Tutorial Introduction

Page 7 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

and loops
The next program uses the formula

 degrees Celsius = (5 / 9) (degrees Fahrenheit - 32)

to print the following table of Fahrenheit
temperatures and their centigrade or Celsius
equivalents:

 0 -17
 20 -6
 40 4
 60 15
 80 26
 100 37
 120 48
 140 60
 160 71
 180 82
 200 93
 220 104
 240 115
 260 126
 280 137
 300 148

This table can be printed by the Eiffel program

 class
 FAHR_CELSIUS
 -- print a fahrenheit-celsius table
 create
 make
 feature
 make
 local
 fahr: INTEGER -- degrees Fahrenheit
 do
 from
 fahr := 0
 until
 fahr > 300
 loop
 io.put_character ('%T')
 io.put_integer (fahr)
 io.put_character ('%T')
 io.put_integer ((fahr-32) * 5 // 9)
 io.put_new_line
 fahr := fahr + 20
 end
 end
 end

2013-01-15 4:31 PMA Tutorial Introduction

Page 8 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

Any characters between -- and the end of the line
are ignored by the compiler, they are comments.

In Eiffel local variables can be declared in each
routine. They come before the do end block of a
routine. In the above program the local variable
named fahr is declared to be of type INTEGER.
Eiffel is strongly typed. Therefore any variable,
expression, etc. has to have a type. In Eiffel an
INTEGER is a number between -2^31 and 2^31 -
1, i.e. it has at least 32 bits.

INTEGER is a class of the kernel library.

The procedure make of FAHR_CELSIUS has a loop
with an initialization section, an exit condition and a
loop body. In Eiffel a loop works as follows.

The inititialisation section is executed (from ...).
The exit condition is tested (until ...).
As long as the condition is false, the loop body
(loop ...) is executed and the exit condition is
retested
As soon as the exit condition evaluates true,
the loop terminates and executions resumes
with the first statement below the loop (...
end).

The expression

 (fahr-32) * 5 // 9

is an integer expression. The usual arithmetic
precedence rules are valid. Therefore fahr-32 has to
be in parenthesis. The operator // is an integer
division.

Characters are in single quotes. 'a' is the character
a. '%T' is the special character tab.

Character input and
output

2013-01-15 4:31 PMA Tutorial Introduction

Page 9 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

The kernel library allows you to read and write from
and to files. A file is seen as a sequence of lines
separated by newline characters. Each line is a
sequence of characters.

This view is independant from the used platform or
operating system. On some systems (e.g.
Windows) the lines in a file are separated by the
two characters carriage return linefeed. The kernel
library does the corresponding mapping that from
the perspective of the Eiffel program the file looks
like a sequence of lines separated by newline
characters.

Each Eiffel program has 3 files or text streams
open: standard_input, standard_output and
standard_error. By default standard_input is the
keyboard and standard_output and standard_error are
the screen. By using pipes or io redirection the
standard files can also be connected to physical
files or temporary file buffers. A program which just
reads from standard_input and writes to
standard_output does not care, to which resources
the files are connected.

The query io from the class ANY returns an object
of type STD_FILES which gives us access to the
standard files connected to our program.
STD_FILES has many features. The most important
features used in the following programs are:

 end_of_file: BOOLEAN
 -- Has end of file been reached on standard_input
 -- by the last read operation?

 read_character
 -- Read the next character from standard_input
 -- and make it available in last_character. Set end_of_file
 -- to True, if there are no more characters.
 require
 not end_of_file
 ...

 last_character: CHARACTER
 -- Character, read by the last call to read_character

 put_character (c: CHARACTER)
 -- Write `c' at end of default output.
 ...

2013-01-15 4:31 PMA Tutorial Introduction

Page 10 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

Note: EiffelStudio does not support the query
end_of_file in the class STD_FILES. Instead of
io.end_of_file you have to type
io.input.end_of_file.

The above is just a copy some text in the file
std_files.e of the kernel library. Usually each
feature in Eiffel is documented with a short header
comment which describes what the feature does or
returns.

The four described features show the usual
command query separation. read_character is a
command. It tries to read a character from
standard_input. It makes the encountered
character available in the query last_character or
flags the end of file in the query end_of_file in case,
that there are no more characters available on
standard_input. The command put_character writes
a character to default_output which by default is
standard_output.

Calls to put_character, put_string, etc. can be
interleaved; the output will appear in the order in
which the calls are made.

The command read_character has the precondition

 require not end_of_file

i.e. you are not allowed to call read_character, if the
last read operation has already encountered the
end of the input stream.

You can configure your eiffel system to monitor
assertions. If you write in the ace-file of your
program

 root
 ...
 default
 assertions(all)
 cluster
 ...
 end

2013-01-15 4:31 PMA Tutorial Introduction

Page 11 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

all assertions like preconditions are monitored at
runtime. This is a great aid in debugging programs.
Once your program is mature and well tested, you
can switch the monitoring of the assertions off by
assertions(no) without any change in your program
text.

Preconditions are part of Design by Contract which
is extensively used in Eiffel programs. A
precondition establishes a part of a contract
between the client and the supplier of a feature
which puts an obligation on the client (i.e. the
caller).

Obligation of the client: Only call a feature if
you are sure that the precondition is met.

The other part of the contract can be specified in a
postcondition, which puts an obligation on the
supplier. Possible Design by Contract assertions are
preconditions, postconditions, class invariants, loop
invariants, loop variants and checks. More on
Design by Contract later.

File copying
Given just character input output a lot of useful
programs can be written without knowing anything
more about input and output.

The first program just copies all characters from
input to output.

 class
 COPY
 create
 make
 feature
 make
 do
 from
 io.read_character
 until
 io.end_of_file
 loop
 io.put_character (io.last_character)
 io.read_character
 end

2013-01-15 4:31 PMA Tutorial Introduction

Page 12 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 end

 end

The program is self documentary. In the loop we
try to read the first character from the input
stream. The exit condition io.end_of_file checks,
whether the end of the stream has been reached.

As long as the end has not yet been reached, the
last read character is written by
io.put_character(io.last_character) to the output
stream.

The exit condition guarantees, that we satisfy the
precondition of read_character i.e. that we never try
to read beyond the end of the stream.

Character counting
A slight modification of the copy program gives us a
program, which counts the number of characters in
the input stream.

 class
 CHAR_COUNT
 create
 make
 feature
 make
 local
 nc: INTEGER -- number of characters
 do
 from
 io.read_character
 until
 io.end_of_file
 loop
 nc := nc + 1
 io.read_character
 end

 io.put_string ("number of characters: ")
 io.put_integer (nc)
 io.put_new_line
 end
 end

Instead of copying the read character to output, we

2013-01-15 4:31 PMA Tutorial Introduction

Page 13 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

increment the counter nc. At the end we output the
number of characters encountered.

Most types in Eiffel have reasonable default values.
All variables of type INTEGER are initialized with 0.
Therefore it is not necessary to initialize nc.

Unlike C Eiffel does not have an increment
operator. You have to write nc:=nc+1 to increment
nc.

Arrays and objects
In order to demonstrate the use of arrays and
objects we write a program to count number of
occurrences of each digit, the number of
encountered white spaces and other characters in
the input.

There are twelve categories of input. In order to
store the occurrences of each digit we use an array
of integers instead of an indiviual variable for each
digit.

 class COUNT_DIGITS create make feature
 make
 local
 ndigit: ARRAY[INTEGER]
 nwhite, nother: INTEGER
 c: CHARACTER
 i: INTEGER
 do
 create ndigit.make_filled (0, ('0').code, ('9').code)
 -- create array object

 from io.read_character until io.end_of_file loop
 c := io.last_character
 if '0' <= c and c <= '9' then
 i := c.code
 ndigit[i] := ndigit[i] + 1
 elseif c = ' ' or c = '%N' or c = '%T' then
 nwhite := nwhite + 1
 else
 nother := nother + 1
 end
 io.read_character
 end

 io.put_string ("digits = ")

2013-01-15 4:31 PMA Tutorial Introduction

Page 14 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 from i := ('0').code until i > ('9').code loop
 io.put_character (' ')
 io.put_integer (ndigit[i])
 i := i + 1
 end
 io.put_string (", white space = ");
 io.put_integer(nwhite)
 io.put_string (", other = ");
 io.put_integer(nother)
 io.put_new_line
 end
 end

The output of the program on itself is something
like

 digits = 5 5 0 0 0 0 0 0 0 2, white space = 298, other = 58

The declaration

 ndigit: ARRAY[INTEGER]

declares the variable ndigit to be an array of
integers. The size of arrays in Eiffel is given at
runtime and not at compile time. The statement

 create ndigit.make_filled(0, ('0').code,('9').code)

creates an array object with the character code of
'0' as the lower index and the character code of '9'
as the upper index, i.e. an array of size 10 and fills
all entries with the value 0. But instead of
explaining the features of ARRAY lets have a look at
the corresponding declaration in the source file
array.e.

 class ARRAY[G] ... create make ... feature ...

 make_filled (value:G; l,u: INTEGER)
 -- Create an array with the lower bound `l'
 -- and upper bound `u' and fill it with `value'.
 -- In case of u < l the array is empty

 lower: INTEGER
 -- The lower bound of the array index.

 upper: INTEGER
 -- The upper bound of the array index.

 count: INTEGER

2013-01-15 4:31 PMA Tutorial Introduction

Page 15 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 -- Number of elements in the array.

 item alias "[]" (i: INTEGER): G
 -- The i-th element of the array.
 require
 lower <= i
 i <= upper
 ...
 end

 put (v: G; i: INTEGER)
 -- Put `v' at position `i' of the array.
 require
 lower <= i and i <= upper
 ...
 end
 end

Looking at this, it should be quite clear what the
array statements in the program mean.

The class ARRAY is a generic class with the generic
parameter G. You can use any type for G to declare
an array. The following are valid array declarations:

 a1: ARRAY[CHARACTER]
 a2: ARRAY[INTEGER]
 a3: ARRAY[ARRAY[INTEGER]]

The last one declares an array of arrays. However

 a1: ARRAY[ARRAY] -- invalid declaration

is invalid. Now we can understand the differences
between classes and types. ARRAY is a class and
ARRAY[INTEGER] is a type. For non generic classes
the class name denotes a class and a type at the
same time.

The feature item is declared with the alias "[]". That
means that instead of writing ndigit.item(i) you can
use the shorthand ndigit[i].

The alias mechanism is also used for the basic
types like INTEGER. E.g. in the source of the class
INTEGER you will find the declaration (well, not
exactly, but in principle)

2013-01-15 4:31 PMA Tutorial Introduction

Page 16 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 plus alias "+" (other: INTEGER): INTEGER

i.e. the expression a + b is just a shorthand (an
alias) for a.plus(b) which calls the feature plus on
the object a (or target a in Eiffel speak) with the
argument b.

Now back to the digit counting program. The loop of
the program reads one character at a time. It has
to be decided whether the character is a digit,
whitespace or anything else. In order to do this we
use a conditional statement. It has the general
form:

 if condition_1 then
 compound_1
 elseif condition_2 then -- zero or more elseif parts
 compound_2
 ...
 else -- optional else part
 compound
 end

Note: The keyword elseif does not have any
embedded blank! Due to the use of the
keywords if, then, elseif and end no
parentheses are necessary to delimit the
conditions.

A compound is any sequence of valid Eiffel
statements. The conditional statement behaves in
the same manner as conditional statements in
other languages like C, java, etc.

Characters can be compared with the usual
relational operators. Each character has a code
(usually the ascii code). The class CHARACTER has
the query code which returns the corresponding
character code. The condition '0' <= c and c <= '9'
tests if c is a digit.

To denote special characters like newline etc. Eiffel
character constants can be written with escape
sequences '%N' for newline and '%T' for tab.

A special provision is necessary for using features

2013-01-15 4:31 PMA Tutorial Introduction

Page 17 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

on constants (and also on operator expressions).
The character constant '0' is an expresssion of type
CHARACTER. Therefore all features of the class
CHARACTER can be called with objects which are
given as character constants.

However, it is not possible to write '0'.code because
this would lead to some ambiguities in parsing the
language. In order to use a constant as an object
(or a target) for a feature call, it has to be
parenthesized, i.e. ('0').code denotes the character
code of the character '0'.

Although the program is a little bit artificial (who
wants to count the digits in a file?), we will write a
different version of the program to demonstrate
more Eiffel techniques.

In the above program the decision whether a
character is a digit, a whitespace or any other is
done in the conditional statement. Since there are
only 256 different characters (at least as long as we
do not consider unicode characters), we could use
an array to make this decision.

The key idea is to use an array of size 256. Each
array element references a counter. The three
whitespace entries for blank, tab and newline shall
reference the same counter. Each entry for a digit
shall reference its corresponding digit counter and
all other entries shall reference a counter for the
other characters.

It is quite easy to design a class for the counter
object:

 class COUNTER_OBJECT feature
 value: INTEGER
 increment do value := value + 1 end
 invariant
 value >= 0
 end

In Eiffel a class (and also the corresponding type)
has either copy or reference semantics. The
COUNTER_OBJECT class has reference semantics.

2013-01-15 4:31 PMA Tutorial Introduction

Page 18 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

The class INTEGER has copy semantics. The class
INTEGER is declared like

expanded class INTEGER ... end

with the keyword expanded to declare a class with
copy semantics. The difference between copy and
reference semantics is important for assignment,
argument passing and comparison with the
operator =.

Objects with copy semantics are copied in
assignment and argument passing (call by value).
The comparison operator = compares the content
(i.e. the value) of the objects.

Objects with reference semantics are not copied
during assigment and argument passing (call by
reference), just a reference to the object is copied
from the source to the target. The comparison
operator = only evaluates true, if the left hand side
and the right hand side of the comparison reference
the same object.

If you want to compare the equality (i.e. same
content) of two objects with reference semantics,
you have to use the equality operator ~. On
expanded type objects the comparison operators =
and ~ give identical results.

In COUNTER_OBJECT we declared the class
invariant

 invariant
 value >= 0

A class invariant can be declared at the end of the
class (beyond the last feature block). It is a
consistency condition. It states that before and
after each feature call the consistency condition has
to be satisfied.

For this small class COUNTER_OBJECT, the
invariant does not give us a lot. But it states clearly
our design intention that a counter has a non

2013-01-15 4:31 PMA Tutorial Introduction

Page 19 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

negative value.

In classes with many attributes writing a class
invariant is very helpful. By extending the classes
(adding more features or making the features more
powerful) you might forget to satisfy the invariant.
Switching assertion monitoring on allows the
runtime to remind you of the invariant condition by
giving you a strong message about the violation.

With the COUNTER_OBJECT class the modified
program digit count program can be written easily.
We give first the layout:

class COUNT_DIGITS2 create make feature {NONE}

 white_counter, other_counter: COUNTER_OBJECT
 char_counter: ARRAY[COUNTER_OBJECT]

 make
 do
 initialize
 read_input
 write_statistics
 end

 initialize
 ...

 read_input
 ...
 write_statistics
 ...
end

Since the program is a little bit longer, we split for
better readability and maintainability the code over
the three different routines initialize, read_input
and write_statistics.

The procedure initialize initializes the counter
objects and the arrays, read_input scans the input
and fills the counters appropriately and
write_statistics gives us the expected output at the
end of the program.

The three routines must have access to the
counters. Therefore we put the counters into
attributes. This avoids argument passing.

2013-01-15 4:31 PMA Tutorial Introduction

Page 20 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

The code for initialize looks like:

 initialize
 local
 co: COUNTER_OBJECT
 i: INTEGER
 do
 create white_counter; create other_counter
 create char_counter.make_filled (other_counter,0,255)

 from i:= ('0').code until i = ('9').code + 1 loop
 create co
 char_counter[i] := co
 i := i + 1
 end

 char_counter[('%N').code] := white_counter
 char_counter[('%T').code] := white_counter
 char_counter[(' ').code] := white_counter
 ensure
 char_counter.count = 256
 end

There is nothing really surprising here. It makes a
straight forward initialization of the counter objects.
The postcondition states, that the array char_counter
is properly initialized. The following routines can
rely on this property.

With that done, the routine read_input really gets
very simple

 read_input
 require
 char_counter.count = 256
 local
 c: CHARACTER
 do
 from
 io.read_character
 until
 io.end_of_file
 loop
 c := io.last_character
 char_counter[c.code].increment
 io.read_character
 end

 end

On each read character c it just retrieves a
reference to its counter object by

2013-01-15 4:31 PMA Tutorial Introduction

Page 21 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

char_counter[c.code] and calls the feature increment
on the counter object.

The precondition states that the routine expects the
array char_counter properly initialized. If the
precondition were not satisfied, read_character could
access the array char_counter out of bounds.

Now writing the routine write_statistics is nothing
more than a piece of cake.

 write_statistics
 require
 digit_counter.count = 10
 local
 i: INTEGER
 do
 io.put_string ("digits = ")
 from i := 0 until i = 10 loop
 io.put_character (' ')
 io.put_integer (digit_counter[i].value)
 i := i + 1
 end
 io.put_string (", white space = ")
 io.put_integer(white_counter.value)
 io.put_string (", other = ")
 io.put_integer(other_counter.value)
 io.put_new_line
 end

Functions
Up to now we only have written procedures.
Remember that the general term is routine. From a
user perspective routines are commands. The other
category from the user perspective are queries
(features that return a result, i.e. give an answer to
a question). Queries can either be implemented as
attributes or functions.

We are going to write a function which calculates
the factorial. Remember the mathematical
definition

 n! = 1, if n = 0
 n! = n * (n-1)!, if n > 0

2013-01-15 4:31 PMA Tutorial Introduction

Page 22 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

In Eiffel you can write recursive functions. Since the
definition is recursive, it is easy to implement it by
a recursive function.

 fac (n: INTEGER): INTEGER
 require
 n >= 0
 do
 if n = 0 then
 Result := 1
 else
 Result := n * fac (n - 1)
 end
 end

Any function in Eiffel has an implicitely declared
local variable with name Result. There is no
necessity to declare it. The compiler does it for you.
The type of Result is the return type of the routine.
In the routine you have to assign to Result (or
create Result), nothing more. Whatever has been
assigned to Result will be returned to the caller of
the function.

Note: Functions can have zero or more arguments.
Nothing prevents you from defining a functions like

 five: INTEGER do Result := 5 end

 array_of_10_ints: ARRAY[INTEGER] do create Result.make_filled(0,0,9) end

The user does not know, that five and
array_of_10_ints are functions. For the user, they
are argumentless queries, indistinguishable from
attributes. This is the principle of uniform access.
The implementer can decide to implement an
argumentless query as a function or an attribute
without affecting any client code.

For those who don't like recursive functions, we
give also an iterative version of factorial

 factorial_iterative (n: INTEGER): INTEGER
 require
 n >= 0
 local
 i: INTEGER
 do

2013-01-15 4:31 PMA Tutorial Introduction

Page 23 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 from Result:=1; i:=0 until i = n loop
 i := i + 1
 Result := i * Result
 end
 end

Stylistic note: Eiffel does not require semicolons as
statement terminators or separators. But they are
allowed. The syntax defines all semicolons as
optional. In the above function, we could have
written Result:=1 n:=i leaving out the semicolon.
However it is good practice for readability to use
the semicolons if you write more than one
statement on a line.

The recursive version of the function is easy to
verify because it is just the mathematical definition
transcribed to Eiffel syntax. To verify the iterative
version requires some thinking. Are the loop
bounds correct? Is "one too few iterations" or "one
too many iterations" possible? Alltough the loop is
not very complicated, let us try to verify the loop a
little bit more formally and learn more Eiffel
techniques.

The key idea is, that Result always contains i!. We
start the loop with Result=1 which is by definition 0!.
I.e. at the start of the loop Result=i! is satisfied.

In each iteration we increment i by one and assign
to Result the value i*Result, i.e. i*(i-1)!. Therefore
if Result=i! is valid at the start of the loop body, it is
also valid at the end of the loop body.

We call a condition, which is true at the start and at
the end of the loop body a loop invariant.

Up to now, we have convinced ourselves, that
Result=i! is a loop invariant.

At the end of the loop we know that the exit
condition i=n is true. Therefore at the end of the
loop we have

 i = n and Result = i!

2013-01-15 4:31 PMA Tutorial Introduction

Page 24 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

which is identical to

 Result = n!

Eiffel allows us to specify loop invariants. Since we
have already the very reliable recursive function
fac, we can write the invariant completely in Eiffel.

 factorial_iterative (n: INTEGER): INTEGER
 require
 n >= 0
 local
 i: INTEGER
 do
 from i:=0; Result:=1 invariant
 0 <= i and i <= n
 Result = fac (i)
 until
 i = n
 loop
 i := i + 1
 Result := i * Result
 variant
 n - i
 end
 end

We have added the trivial invariant condition, that i
loops between 0 and n. You can use the assertion
monitoring facilities of Eiffel to check the loop
invariants. If you write in the corresponding ace-file
"default assertions(all)", the loop invariants are
monitored. A violated loop invariant will be flagged
by the Eiffel runtime.

In the above program we have also added a loop
variant. This is a facility to detect infinite loops. A
variant is a non negative integer expression. It has
to decrement at least by one on each iteration of
the loop. The variant is an upper bound of the
number of the remaining iterations. Since i loops
from 0 to n, the remaining iterations are n-i.

In assertion monitoring mode, the Eiffel runtime
checks on each loop iteration that the variant is non
negative and that it decrements at least by one on
each iteration. If this is not the case, the runtime
flags a violated loop variant.

2013-01-15 4:31 PMA Tutorial Introduction

Page 25 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

More focus on classes
Up to now we have only created root classes for
programs and used some classes of the kernel
library. We were focussing on the algorithmic
aspects by mainly writing procedures with control
structures like loops and alternative commands. But
the real power of Eiffel is its possibility to make
very different kind of classes and combine them.

The examples in this section will show some
different uses of classes. The first one
demonstrates some possibilities to use inheritance,
the second shows how you can use genericity and
the third one allows you to make classes to
represent e.g. complex numbers.

A rectangle is a sort of a shape
In graphics we want to deal with graphical objects
like rectangles, circles, etc. We are going to call
these graphical objects shapes.

There are some common things to do with shapes.
Shapes can be moved, displayed, put on top of
other shapes. The code of a graphical program gets
very cluttered if it has to distinguish in many places
whether a shape is a rectangle or a circle etc.

Eifel allows us define an abstract class SHAPE with
some common features without providing the
implementation. The more specific classes like
RECTANGLE inherit from SHAPE and have to define
their specific implemention of the features.

In order to keep the example simple we define four
abstract and one concrete feature in SHAPE. Let us
look at the class text.

deferred class SHAPE feature
 x_left: INTEGER deferred end
 x_right: INTEGER deferred end
 y_lower: INTEGER deferred end
 y_upper: INTEGER deferred end
 write_dimensions

2013-01-15 4:31 PMA Tutorial Introduction

Page 26 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 do ... end
invariant
 x_left <= x_right
 y_lower <= y_upper
end

The four abstract features give the maximum
extension of the shape in the x and y dimension.
There is no implementation for the features.
Instead of the usual do end block we encounter a
deferred end block. The implementation of the
features is deferred to the descendants which are
going to inherit from the class SHAPE.

x_left, x_right, y_lower and y_upper are called
deferred features.

No objects of type SHAPE can be created, because
such an object would have undefined features. A
class with deferred features is itself deferred. This
has to be written into the class header. Therefore
we have written deferred class SHAPE instead of just
class SHAPE. It is a language rule that every class
which has deferred features has to be tagged with
the keyword deferred in the class header.

You could argue, that the keyword deferred in the
class header is redundant, because the compiler
already knows from the features, that the class is
deferred. But the keyword deferred in the class
header is required by the language in order to state
clearly that the class is an abstract one.

Note also, that the class SHAPE does not have any
creation procedure. A creation procedure would be
meaningless, because it is no possible to create
direct instances of an abstract class.

Allthough the class just declares four abstract
features it can already state some properties of
these features in the class invariant. Remember
that the class invariant is a consistency relation of
the features of the class.

The class SHAPE puts the requirement on all its
descendants that they satisfy this consistency

2013-01-15 4:31 PMA Tutorial Introduction

Page 27 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

realation i.e. that they satisfy the class invariant.
Beside all other features descendants inherit the
class invariant as well.

The class invariant is an assertion, which can be
monitored at runtime. The class invariant has to be
satisfied after creation of an object and before and
after the execution of any publicly available feature.
This gives a strong guarantee that any modificating
routine will not violate its invariant.

With four for abstract features x_left, x_right,
y_lower and y_upper it is possible to write the
procedure write_dimensions which e.g. writes the x
and y dimensions of the shape to standard output.
The procedure write_dimensions is an effective
procedure. The implemention is not spelled out
completely above because it is straightforward. It
could be written e.g. like

 write_dimensions
 do
 io.put_string ("shape with dimensions x = ")
 io.put_integer (x_left)
 io.put_string ("..")
 io.put_integer (x_right)
 io.put_string (" and y = ")
 io.put_integer (y_lower)
 io.put_string ("..")
 io.put_integer (y_upper)
 io.put_new_line
 end

As you see the routine write_dimensions can use the
features x_left, x_right, y_lower and y_upper even if
they are only deferred features. The class SHAPE is
sometimes called a partial implementation. It
implements the feature write_dimensions but leaves
the implementation of the deferred features to its
descendants.

Now lets define a rectangle as a kind of a shape.
The definition is straightforward, because a
rectangle is defined by its left/right and
lower/upper dimensions.

class
 RECTANGLE

2013-01-15 4:31 PMA Tutorial Introduction

Page 28 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

inherit
 SHAPE
create
 make
feature
 x_left: INTEGER
 x_right: INTEGER
 y_lower: INTEGER
 y_upper: INTEGER
feature {NONE}
 make (x1, y1, x2, y2: INTEGER)
 -- Make a rectangle with lower left corner (`x1',`y1')
 -- and upper right corner (`x2',`y2').
 require
 x1 <= x2
 y1 <= y2
 do
 x_left := x1; x_right := x2
 y_lower := y1; y_upper := y2
 end
end

A RECTANGLE inherits from the deferred class
SHAPE the deferred features and has to effect them
(i.e. provide an implementation for them).
Redeclaring a deferred feature into an effective one
is called effecting a feature in Eiffel terminology.

The class RECTANGLE has chosen to declare the
deferred features as attributes.

Since RECTANGLE has redeclared all deferred
features into effective ones, it is no longer a
deferred class. In order to create objects of type
RECTANGLE, the class RECTANGLE provides the
creation procedure make which, given the
coordinates of the lower left and the upper right
corner, initializes its attributes properly.

In order to satisfy the class invariant of its parent
SHAPE, the creation procedure make puts a
precondition on the coordinates it receives. If called
with arguments satisfying its precondition, it can
guarantee that the rectangle fullfils the class
invariant imposed by its parent SHAPE.

We made the creation procedure make secret
because we put the procedure in a feature block
with the specification feature {NONE}. This means,

2013-01-15 4:31 PMA Tutorial Introduction

Page 29 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

that the procedure cannot be called as a normal
procedure. It is only available for creation because
it is listed in the class header as a creation
procedure. This is a practive often used with
creation procedures in order to allow them to be
used only for creating objects and for nothing else.

But nothing prevents you from making the creation
procedure public. If you do this, you must be sure,
that calling the procedure at any time in the
lifecycle of an object does not do any harm.

Another kind of shape is a circle. A circle e.g. can
be defined by the coordinates of its center point
and by its radius. Therefore it makes sense for a
circle to have the attributes x_center, y_center and
radius.

With these attributes it is easy to calculate the
outer dimensions x_left, x_right, y_lower and
y_upper. In the class CIRCLE these features will not
be attributes like in rectangle, they will be
redeclared into routines or more specifically
functions (remember that a function is a routine
which returns a value and a procedure is a routine
which does not return a value).

The class CIRCLE could be defined like

class
 CIRCLE
inherit
 SHAPE
create
 make
feature
 x_center: INTEGER
 y_center: INTEGER
 radius: INTEGER

 x_left: INTEGER do Result := x_center - radius end
 x_right: INTEGER do Result := x_center + radius end
 y_lower: INTEGER do Result := y_center - radius end
 y_upper: INTEGER do Result := y_center + radius end

feature {NONE}
 make (x, y: INTEGER; r:INTEGER)
 -- Make a circle with center coordinates (`x',`y')
 -- and radius `r'.
 require

2013-01-15 4:31 PMA Tutorial Introduction

Page 30 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 r >= 0
 do
 x_center := x
 y_center := y
 radius := r
 end

end

The two classes RECTANGLE and CIRCLE have
chosen two different techniques to redeclare the
deferred features of its parent SHAPE into effective
ones. RECTANGLE has used attributes and CIRCLE
has used functions. Both possibilities are valid in
Eiffel. The complete implementation is deferred to
the descendant. This includes the decision between
a memory based (attribute) and computation based
(function) implementation.

With the classes RECTANGLE and CIRCLE it is
possible to create rectangle and circle objects.
Because RECTANGLE and CIRCLE inherit from
SHAPE, it is possible e.g. to assign a variable of
type RECTANGLE to a variable of type SHAPE. We
say that RECTANGLE conforms to SHAPE.

 local
 s: SHAPE
 r: RECTANGLE
 c: CIRCLE
 do
 create r.make (0,0, 10, 20)
 create c.make (5,5, 30)

 s := r -- possible because RECTANGLE conforms to SHAPE
 s.write_dimensions -- write the dimensions of `r'

 s := c
 s.write_dimensions -- write the dimensions of `c'
 end

This example is rather naive, because the variables
`r' and `c' could have been used directly. The
technique gets more interesting if you define e.g.
an array of shapes which contains all the different
graphical objects in your system. For this purpose
you can define a variable objects of type
ARRAY[SHAPE] and insert all your graphical objects

2013-01-15 4:31 PMA Tutorial Introduction

Page 31 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

into this array.

Let us assume that you declared the some more
deferred features define in class SHAPE

deferred class SHAPE feature
 ...
 move (x, y: INTEGER)
 -- Move the object `x' to the left and `y' up.
 deferred end

 draw
 -- Draw the object.
 deferred end
 ...
end

and provided specific implementations in all the
effective descendants.

With these definitions it is easy to write a procedure
which moves all graphical objects by a certain
displacement.

class GRAPHICAL_SYSTEM feature
 ...
 objects: ARRAY[SHAPE]

 move_all (x, y: INTEGER)
 -- Move all objects in `objects' x to the right and `y' up.
 local
 i: INTEGER
 do
 from i:=objects.lower until i > objects.upper loop
 objects[i].wipe_out
 objects[i].move (x,y)
 objects[i].draw
 i := i + 1
 end
 end
 ...
end

Since SHAPE is a reference class, each entry in the
array objects is a reference to the corresponding
objects.

 +----+
 objects --> | | --> rectangle object
 +----+
 | | --> circle object

2013-01-15 4:31 PMA Tutorial Introduction

Page 32 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 +----+
 | | --> rectangle object
 +----+
 | | --> triangle object
 +----+
 | | --> ...
 +----+
 | | --> ...
 +----+

Matrices as objects
A matrix is a rectangular scheme of numbers

 col 1 col 2 col 3

 row 1: 1 10 -5

 row 2: -1 2 -7

The above matrix has 2 rows and 3 columns. The
entries are integer numbers. With the bracket
notation a[1,3] we address the entry in the first
row and the third column.

We want to write a.rows to get the number of rows
and a.columns to get the number of columns.

Two matrices can be added, substracted and
multiplied.

For addition and substraction the two added
matrices must have exactly the same dimensions.
The sum c=a+b is calculated according to the formula

 c[i,j] = a[i,j] + b[i,j]

For the multiplication a*b, the number of columns of
a has to be the same as the number of rows of b.
The product c=a*b is calculated according to the
formula

 c[i,k] = a[i,1]*b[1,k] + a[i,2]*b[2,k] + ... + a[i,n]*b[n,k]

 where n = a.columns = b.rows

Up to now this elementary mathematics.

For our Eiffel class MATRIX we want to be able to
create matrix objects with a certain number of rows

2013-01-15 4:31 PMA Tutorial Introduction

Page 33 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

and columns. We don't want to write a matrix class
for INTEGERs and one for REALs. We want to write
the code of MATRIX only once. Eiffel has generic
classes to achieve this. Omitting the details the
outline the class looks like

class
 MATRIX[G->NUMERIC create default_create end]
create
 make
feature {NONE}
 make (r, c: INTEGER)
 -- Make a matrix with `r' rows and `c' columns
 ...
 ensure
 rows = r
 columns = c
 end
feature
 rows: INTEGER ...
 columns: INTEGER ...

 is_valid_row (i: INTEGER): BOOLEAN
 do Result := 1 <= i and i <= rows end
 is_valid_column (j: INTEGER): BOOLEAN
 do Result := 1 <= j and j <= columns end

 item alias "[]" (i, j: INTEGER): G
 -- The element at row `i' and column `j'.
 require
 is_valid_row (i)
 is_valid_column (j)
 ...
 end
 put (el: G; i,j: INTEGER)
 -- Put element `el' at row `i' and column `j'.
 require
 is_valid_row (i)
 is_valid_column (j)
 ...
 ensure
 item (i,j) = el
 end
 plus alias "+" (other: like Current): like Current
 -- The sum `Current' + `other'.
 require
 rows = other.rows
 columns = other.columns
 ...
 end
 minus alias "-" (other: like Current): like Current
 -- The difference `Current' - `other'.
 require
 rows = other.rows
 columns = other.columns

2013-01-15 4:31 PMA Tutorial Introduction

Page 34 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 ...
 end
 product alias "*" (other: like Current): like Current
 -- The product `Current' * `other'.
 require
 columns = other.rows
 ...
 end
feature {NONE} -- implementation
 ...
end

Several aspects of the Eiffel language are
encountered in this outline:

1. Constrained genericity

class MATRIX[G->NUMERIC create default_create
end] states that MATRIX is a generic class. You can
define a variable of type MATRIX[INTEGER] or
MATRIX[REAL]. We don't want variables of type
MATRIX[BOOLEAN], because you cannot do the
elementwise calculation with booleans. Therefore
we constrain the generic parameter G to be
anything which conforms to NUMERIC.

NUMERIC is a class in the kernel library declaring
the standard numeric operations like plus, minus,
product etc. as deferred features. The classes
INTEGER and REAL inherit from NUMERIC (i.e. they
conform to NUMERIC) and implement the numeric
operations.

Furthermore we want all actual generics of MATRIX
to be self initializing, i.e. we require that
`default_create' is a creation procedure. This is
required by create default_create end. Without that
requirement, MATRIX could not create elements to
fill the rows and columns. The default creators
clause has the general form create cp1, cp2, cp3,
... end and is optional. It states that cp1, cp2, ...
must be creation procedures of any actual generic.

2. Operator aliases

We don't want to write a.plus(b) to add the
matrices a and b. We prefer the mathematical

2013-01-15 4:31 PMA Tutorial Introduction

Page 35 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

notation a+b. Each feature in an Eiffel class can be
given an alias name. The alias has to be an
operator or the bracket alias. This allows us to write
a+b, a-b and a*b.

3. Bracket alias

To address an element of the matrix the notation
a[i,j] is very concise and easy to read. It is
preverable over a.item(i,j). Each class can have at
most one bracket alias. We have used the bracket
alias as an alias for the feature item.

4. Anchored types

We could have defined the feature plus as

 plus alias "+" (other: MATRIX[G]): MATRIX[G]

but instead of this we have written

 plus alias "+" (other: like Current): like Current

In the class MATRIX the types MATRIX[G] and like
Current are equivalent, because the current type is
MATRIX[G].

Things become different if we want to define a class
SPECIAL_MATRIX inherit MATRIX ... end which inherits
all features of MATRIX and defines some additional
features. In the class SPECIAL_MATRIX we want to
add, substract and multiply objects of type
SPECIAL_MATRIX[G] with objects of type
SPECIAL_MATRIX[G] returning an object of type
SPECIAL_MATRIX[G].

Anchoring the argument and the result of the
operations plus, minus and product does exactly this.
The type like Current is anchored to the current
type. In SPECIAL_MATRIX the current type is
SPECIAL_MATRIX[G] and not MATRIX[G].

We can anchor types to Current and to other
features (which must be queries) of the class.

2013-01-15 4:31 PMA Tutorial Introduction

Page 36 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

5. Design by Contract

As we have already seen in other examples
preconditions and postconditions can be used
document the allowed use and the expected
properties of the outcome of routines.

E.g. the features item and put has to be protected
againts its use outside the bounds of the matrix.
The conditions is_valid_row(i) and is_valid_column(j)
express this condition. The postcondition
item(i,j)=el states that the feature put really does
what it says, put the element `el' and position (i,j)
of the matrix.

The preconditions of plus, minus and product protect
us from combining matrices with incompatible row
and column numbers.

The assertions play a very important role in Eiffel
programming.

First of all they are a means to document your
intentions. Every user of your routines can look at
the header comment, the precondition and the
postcondition to get a very precise picture of what
your routine does without looking at the
implementation.

Secondly they help you to debug your program.
During the development of a program usually all
types of assertions are monitored at runtime. If you
put many assertions into your program a bug is
usually caught very close to its origin. This speeds
up debugging significantly.

Thirdly you can try to verify your program piece by
piece. If you convince yourself, that a certain
routine fulfills its postcondition given that the
precondition has been met, you only have to check
that each client calls a routine with a valid
precondition. The assertions help you to reason
about your program (like we have done in the
above factorial example).

Now we have to find a proper implemention to store

2013-01-15 4:31 PMA Tutorial Introduction

Page 37 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

the elements of the matrix. The easiest way is to
represent a row by an array with indices ranging
from 1 to columns. The whole matrix is represented
by an array of rows ranging from 1 to rows. If we
define

feature {NONE} -- implementation
 matrix: ARRAY[ARRAY[G]]
end

we have with matrix[i] or matrix.item(i) the array
representing the i-th row and with matrix[i][j] or in
its long form matrix.item(i).item(j) the element at
position (i,j).

The feature make initializes the matrix properly

feature {NONE}
 make (r, c: INTEGER)
 -- Make a matrix with `r' rows and `c' columns
 local
 i: INTEGER
 one_row: ARRAY[G]
 default_value: G
 do
 create matrix.make_empty (r, 1)
 from i:=1 until i > r loop
 create one_row.make_filled (default_value, 1,c)
 matrix.extend_rear (one_row)
 i := i + 1
 end
 ensure
 rows = r
 columns = c
 end

With the dimensions of the attribute matrix we know
the rows and the columns of the matrix implicitely.
We implement the features rows and columns as
functions which calculate the value by looking at
matrix.

 rows: INTEGER
 do Result := matrix.upper end
 columns: INTEGER
 do
 if rows > 0 then
 Result := matrix[1].upper
 end
 end

2013-01-15 4:31 PMA Tutorial Introduction

Page 38 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

The element access routines item and put are given
by

 item alias "[]" (i, j: INTEGER): G
 -- The element at row `i' and column `j'.
 require
 is_valid_row (i)
 is_valid_column (j)
 do
 Result := matrix[i][j]
 end
 put (el: G; i,j: INTEGER)
 -- Put element `el' at row `i' and `j'.
 require
 is_valid_row (i)
 is_valid_column (j)
 do
 matrix[i][j] := el
 ensure
 item (i,j) = el
 end

From the arithmetic routines plus, minus and product
we present here only the last one. The others are
left as an exercise to the reader.

 product alias "*" (other: like Current): like Current
 -- The product `Current' * `other'.
 require
 columns = other.rows
 local
 i,j,k: INTEGER
 do
 create Result.make (rows, other.columns)
 from i:=1 until i > rows loop
 from k:=1 until k > other.columns loop
 from j:=1 until j > columns loop
 Result[i,k] :=
 Result[i,k]
 + Current[i,j] * other[j,k]
 j := j + 1
 end
 k := k + 1
 end
 i := i + 1
 end
 end

Excercises:

2013-01-15 4:31 PMA Tutorial Introduction

Page 39 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

Write an invariant for the class MATRIX which
asserts that all rows have the same length.
Augment the class MATRIX with a feature
transposed which returns the matrix with rows
and columns exchanged (i.e. a.transposed[i,j]
= a[j,i]). Write a postcondition which asserts
that the correct properties for rows and columns.

Complex numbers
A complex number consists of the two real
numbers, one representing the real part, the other
representing the imaginary part. So the general
outline for class COMPLEX could be

class COMPLEX feature
 ...
 real: REAL
 imag: REAL
 ...
end

But we want an object of type COMPLEX to behave
like an number. If we defined it as above written,
an object of type complex would be of reference
type. So the statement

 c1 := c2

with c1 and c2 of type COMPLEX would make both
variables pointing to the same object. This is not
what we usually expect dealing with numbers. We
expect that the value of c2 is copied into c1, i.e. we
want objects of type COMPLEX to have copy
semantics instead of reference semantics. So it is
better to define expanded class COMPLEX instead of
class COMPLEX.

Furthermore the kernel library already provides the
class NUMERIC which is an ancestor of the numeric
classes INTEGER and REAL. The class NUMERIC
defines the some features to be expected from a
number.

Looking at the definition of the class NUMERIC in

2013-01-15 4:31 PMA Tutorial Introduction

Page 40 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

the kernel library

deferred class NUMERIC feature
 zero: like Current
 -- Neutral element for addition.
 deferred end
 one: like Current
 -- Neutral element for multiplication.
 deferred end
 plus alias "+" (other: like Current): like Current
 -- The sum `Current' + `other'.
 deferred end
 minus alias "-" (other: like Current): like Current
 -- The difference `Current' - `other'.
 deferred end
 product alias "*" (other: like Current): like Current
 -- The product `Current' * `other'.
 deferred end
 divided alias "/" (other: like Current): like Current
 -- `Current' divided by `other'.
 require
 good_divisor: divisible (other)
 deferred
 end
 identity alias "+": like Current
 deferred end
 negated alias "-": like Current
 -- The negated value of `Current'.
 deferred end
 divisible (other: like Current): BOOLEAN
 -- May current object be divided by `other'?
 deferred end
end

we convince ourselves, that all features can be
implemented by our class COMPLEX. Classes like
NUMERIC where most of the features are deferred
are also called behaviour classes. They define a
certain behaviour which all its descendants have to
satisfy. So the user can expect that any class
inheriting from NUMERIC implements the deferred
features apropiately.

The task of implementing COMPLEX is to effect the
deferred features of NUMERIC. With some standard
mathematics we define

expanded class COMPLEX inherit NUMERIC create
 make, default_create
feature {NONE}
 make (r, i: REAL) do real := r; imag := i end
feature

2013-01-15 4:31 PMA Tutorial Introduction

Page 41 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 real: REAL
 imag: REAL

 one: like Current do create Result.make (1.,0.) end
 zero: like Current do end

 plus alias "+" (other: like Current): like Current
 do
 create Result.make (real + other.real,
 imag + other.imag)
 end
 minus alias "-" (other: like Current): like Current
 do
 create Result.make (real - other.real,
 imag - other.imag)
 end
 product alias "*" (other: like Current): like Current
 do
 create Result.make (real * other.real - imag * other.imag,
 imag * other.real + real * other.imag)
 end
 divided alias "/" (other: like Current): like Current
 local
 a,b,c,d: REAL
 r, i: REAL
 n: REAL -- denominator
 do
 a := real; b := imag
 c := other.real; d := other.imag

 r := a*c + b*d
 i := b*c - a*d
 n := c*c + d*d
 create Result.make (r/n, i/n)
 end
 identity alias "+": like Current
 do
 Result := Current
 end
 negated alias "-" : like Current
 do
 create Result.make (-real, -imag)
 end
 divisible (other: like Current): BOOLEAN
 do
 Result := other /~ zero
 end
end

Note that there are some subtleties in getting
floating point arithmetic really correct. Since real
number are represented as IEEE floating point
numbers there is a positive and a negative zero.
Both values represent the same number but they

2013-01-15 4:31 PMA Tutorial Introduction

Page 42 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

are not identical in the computer. The boolean
expression 0. ~ -0. will evaluate False. The feature
divisible therefore gives an incorrect result, if the
argument other contains a negative zero in the real
or the imaginary part.

A correct implementation of divisible would
compare the absolute value of other against some
very small REAL value. But since we do not want to
do numerical mathematics here we gloss over this
issue.

But there is another interesting point here to
mention. We have defined the two creation
procedures make and default_create. The procedure
make is used to initialize a complex number with its
given real and imaginary part. The feature
default_create is not defined in COMPLEX. It is an
inherited feature of the kernel class ANY which does
nothing.

Doing nothing is a valid creation procedure for
COMPLEX. This at first glance surprising fact can be
understood, if we realize, that COMPLEX has only
two attributes of type REAL. The type REAL is self
initializing, i.e. no explicit initialization means
initialization with zero. So if we do nothing we just
initialize the real and imaginary part with zero.

Due to this fact we can write the feature zero in a
very short form.

 zero: like Current do end

and not with the rather verbose definition

 zero: like Current do create Result.make(0.,0.) end

Any not explicitely initialized variable var will be
initialized by the system as if the instruction

 create var.default_create

were written before its first use. But this is only

2013-01-15 4:31 PMA Tutorial Introduction

Page 43 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

possible if the variable is of a self initializing type,
i.e. a type, which makes the feature default_create
from any available for creation. This has been done
with create make, default_create in the class
COMPLEX. Therefore all objects of type COMPLEX
are self initializing.

Note that our implementation gives us some
additional benefit. We have implemented the class
COMPLEX inheriting from the parent NUMERIC, i.e.
objects of type COMPLEX conform to NUMERIC.
Therefore we can use our class MATRIX from the
previous chapter and define variables of type
MATRIX[COMPLEX].

Linked lists
A linked list is a very basic data structure in
information processing. It has the advantage, that
the insertion of elements at both ends of the list are
fast operations. However, linked lists have the
disadvantage, that access to random elements can
be expensive if the list is long.

We want to write a simple linked list. We have the
following structure in mind.

 +-------+
 | List |
 +-|---|-+
 | |
 | \--\
 | |
 v v
 +-------+ +-------+ +-------+ +-------+
 | first |---->| |--->| |--->.....--->| last |---x
 +-------+ +-------+ +-------+ +-------+

The list has a reference to the first cell and a
reference to the last cell. The first cell has a
reference to the second, the second to the third and
soon. The last cell has a void reference.

If the list is empty, the references to the first and
the last element are void references.

2013-01-15 4:31 PMA Tutorial Introduction

Page 44 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

The cells are containers of the elements, i.e. they
consist of an element and a reference to the next
cell.

It is very easy to remove the first element from the
list. We simply let the reference to the first cell now
point to the second cell.

 +-------+
 | List |
 +-|---|-+
 | |
 | \--\
 \--------------\ |
 v v
 +-------+ +-------+ +-------+
 | |--->| |--->.....--->| last |---x
 +-------+ +-------+ +-------+

Now let us look at the boundary conditions i.e. an
empty list and a list with one element.

 empty one el.
 +-------+ +-------+
 | List | | List |
 +-|---|-+ +-|---|-+
 x x v v
 +-------+
 | |
 +-------+

The design for the information cells is very simple.

class LINKABLE[G] create put feature
 item: G -- Information element of the cell
 next: ?like Current -- Link to the next cell
 put (el:G)
 do
 item := el
 end
 put_next (n: ?like Current)
 do
 next := n
 end
end

The only new thing we introduced here is the
question mark in front the type like Current. The
type ?T is called a detachable type. By default all
types in Eiffel are attached, i.e. the corresponding
variables, expressions, etc. always have to be

2013-01-15 4:31 PMA Tutorial Introduction

Page 45 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

attached to objects. But for the linked list
implementation we need types which can refer to
nothing. Detachable types in Eiffel are good for that
purpose.

If we have a variable v of type ?T, we can write
v:=Void or we can ask, whether the variable is
attached to an object by the boolean expression
v/=Void.

For attached type variables the compiler doesn't
allow that. On the contrary. For attached type
variables the Eiffel compiler verifies that they are
always attached to real objects. If your code does
not make sure that attached type variables are
really attached to objects, the compiler will flag you
an error.

The skeleton of the class for the linked list is
straightforward

class
 LINKED_LIST[G]
feature {NONE}
 first_linkable: ?LINKABLE[G] -- Reference to the first cell
 last_linkable: ?LINKABLE[G] -- Reference to the last cell
feature
 is_empty: BOOLEAN
 do
 Result := first_linkable = Void
 end
 first: G
 ...
 last: G
 ...
 extend_front (el: G)
 ...
 extend_rear (el: G)
 ...
 remove_first
 ...
invariant
 (first_linkable = Void) = (last_linkable = Void)
end

Our simple linked list class has two attributes which
refer to the first and the last cell. They either both
refer to nothing or they both refer to linkable cells.
This property is expressed in the invariant of the

2013-01-15 4:31 PMA Tutorial Introduction

Page 46 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

class. The attachment status of both attributes has
to be the same.

A naive attempt to write the function first results
in the following invalid code:

 first: G -- Invalid Eiffel code !!!
 require
 not is_empty
 do
 Result := first_linkable.item -- Invalid !!!
 end

A valid Eiffel compiler does not accept the
expression first_linkable.item. Since first_linkable
is detachable, it can be a void reference and the call
first_linkable.item can be a call with a void target.

However we are sure, that first_linkable refers to a
real object, because of the precondition not is_empty
for the function first. I.e. we allow a call to first
only if the list is not empty. From our design above
it is clear, that for a non-empty list both
first_linkable and last_linkable always refer to
information cells.

But the compiler is not intelligent enough to infer
that from the precondition. You have to tell it about
the attachment status. We can assert that property
by

 first: G
 require
 not is_empty
 do
 check
 {l:LINKABLE[G]} first_linkable
 end
 Result := l.item -- Now valid!
 end

The expression

 {x:T} expr

is an object test. It is a boolean expression which
checks if expr is attached to an object with a type

2013-01-15 4:31 PMA Tutorial Introduction

Page 47 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

conforming to T. If that is the case, the object test
evaluates to true and the object will be attached to
the object test local x. The boolean expression {x:T}
expr has a side effect.

The above check assertion opens up a scope for the
object test local l. The object test local l can be
used until the end of the surrounding compound i.e.
in this case until the end of the routine. An object
test local is a read only variable. You cannot assign
any new value to it.

Outside its scope it is not possible to use an object
test local. E.g. the following would be invalid:

 ...
 if condition then
 ...
 check {x:T} expr end
 ...
 x.some_feature -- valid, because within scope
 ...
 end
 x.some_other_feature -- invalid, because use of x outside scope
 ...

The function last is nearly a copy of the function
first.

The procedure to insert an element before the first
element is not difficult. We create a new
information cell to contain the new element and let
first_linkable refer to the cell. The new information
cell has to refer to the old first information cell.

In order to get the code correct, we have take the
possibility of an empty list into account.

 extend_front (el:G)
 -- insert element `el' before the first element
 local
 new_cell: LINKABLE[G] -- Attached type, because it is never void
 do
 create new_cell.put (el)

 if is_empty then
 -- case of the empty list
 first_linkable := new_cell
 last_linkable := new_cell
 else

2013-01-15 4:31 PMA Tutorial Introduction

Page 48 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

 -- case of the non-empty list
 new_cell.put_next (first_linkable)
 first_linkable := new_cell
 end
 ensure
 first = el
 end

In order to insert after the last element we again
need an object test.

 extend_rear (el:G)
 -- insert element `el' after the last element
 local
 new_cell: LINKABLE[G] -- Attached type, because it never is void
 do
 create new_cell.put (el)

 if is_empty then
 -- case of the empty list
 first_linkable := new_cell
 last_linkable := new_cell
 else
 -- case of the non-empty list
 check
 {l:LINKABLE[G]} last_linkable
 end
 l.put_next (new_cell) -- let the previous last cell point
 -- to the new last cell
 last_linkable := new_cell -- let new_cell be the last cell
 end
 ensure
 last = el
 end

We need the object test {l:LINKABLE[G]}
last_linkable to let the next pointer of the previous
last cell point to the newly created last information
cell. The check instruction asserts that last_linkable
is attached. Note that the else part will only be
entered if the list is not empty.

Exercises:

Write the procedure remove_first.
Write the procedure remove_last. Why is it more
complex?
Add an attribute count:INTEGER to the linked list
which stores the number of elements in the
list. Update the invariant and the features

2013-01-15 4:31 PMA Tutorial Introduction

Page 49 of 49http://tecomp.sourceforge.net/index.php?file=doc/lang/tutorial.txt

appropiately.
Write a function item alias "[]" (i:INTEGER):G
which returns the i-th element. Assume that
counting starts with zero.
Can you modify the class LINKED_LIST without
changing the class LINKABLE such that an
iteration over all elements with a loop like the
following guarantees a fast access to the
elements of the list.

 from i:=0 until i=list.count loop
 list[i].do_something
 i := i + 1
 end

Copyright (C) 2008,2009 Helmut Brandl
<helmut.brandl@gmx.net>

 Local Variables:
 mode: outline
 coding: iso-latin-1
 outline-regexp: "=\\(=\\)*"
 End:

