
Department of Computer Science and Engineering York University

1

CSE 3401 Assignment 2
Winter 2013

Date out: February 12. Date due: March 3, at 11:30 pm

 The submitted assignment must be based on your individual work. Review the Academic
Honesty Guidelines for more details.

 This assignment constitutes 6% of your total mark for the course and is marked out of 120.

 You should adhere to the coding guidelines posted on the website; comment your code and test
it thoroughly.

 You may define any auxiliary relations if that helps in defining the required predicates.

 You should Submit 2 files for this assignment:

 a2.pl, which is the source code of your solutions for questions 1 and 2. This file should follow
the Prolog solutions format provided on the website (solutionFormat.txt). Also, include any
references you may have used.

 a2.txt, which consists of the test cases you have used to test the predicates in questions 1
and 2, as well as the results of testing. Include a header with your name, student number
and cse login.

Soft Copies: Gather all the required files in a directory named a2answers and submit it
electronically by the deadline. To submit electronically, use the following Prism lab
command:

submit 3401 a2 a2answers

Alternatively, you may use web submit (https://webapp.cse.yorku.ca/submit/) and choose
the correct course and assignment number to upload your files.

http://www.cse.yorku.ca/admin/coscOnAcadHonesty.html
http://www.cse.yorku.ca/admin/coscOnAcadHonesty.html
http://www.cse.yorku.ca/admin/coscOnAcadHonesty.html
https://wiki.cse.yorku.ca/course_archive/2012-13/W/3401/_media/swiprologgettingstarted.pdf
https://webapp.cse.yorku.ca/submit/

Department of Computer Science and Engineering York University

2

Question 1: Finite State Automata (65 Points)

This exercise builds on the discussion of deterministic finite-state automata in the slides Recursion,
divide and conquer, text processing (2 -11).

In order to have several automata defined at the same time, let's give automata names. We can define a
predicate automaton which relates a name to an automaton structure as a term:

automaton(name, [initialState,listOfFinalStates, transitionList]).

For example, the automaton described on slide 5 could be represented by asserting

automaton(evenXoddY, [ee, [eo], [

 ee-x-oe, ee-y-eo,

 oe-x-ee, oe-y-oo,

 oo-x-eo, oo-y-oe,

 eo-x-oo, eo-y-ee]).

Q1.a. Rewrite the fsa and scan predicates so that fsa has as arguments the name of an automaton

and an input sequence, and scan has three arguments: automaton name, input sequence, and current
state. You can test it on the evenXoddY automaton defined above, for example:

?- fsa(evenXoddY, [x,x,y]).

True.

Q1.b. Demonstrate your automaton predicate by defining an automaton called nice with the structure

of the Wikipedia example "Fsm parsing word nice". You can test it by providing test cases such as:

?- fsa(nice, [n,i,c,e]).

True.

Q1.c. Implement a Prolog predicate empty(A) which determines whether the language accepted by
automaton A is the empty set. (Hint: the language is empty if no final state is reachable from the initial
state. To facilitate testing, you need to define a new automaton called emptyTest. The language
accepted by automaton emptyTest is the empty set). You can test the predicate by providing test cases
such as:

?- empty(emptyTest).

True.

https://wiki.cse.yorku.ca/course_archive/2012-13/W/3401/_media/slide06.pdf
https://wiki.cse.yorku.ca/course_archive/2012-13/W/3401/_media/slide06.pdf
http://en.wikipedia.org/wiki/File:Fsm_parsing_word_nice.svg

Department of Computer Science and Engineering York University

3

Q1.d. Implement the predicate disjoint(FSA1, FSA2) which tests whether the languages
accepted by the automata FSA1 and FSA2 are disjoint, i. e., there is no input sequence which causes
both FSAs to enter one of their final states. Assuming you have defined an automaton named good,
which accepts “good”, you may test the predicate by running test cases such as:

?- disjoint(nice, good).

True.

Q1.e Implement the predicate infinite(A) which tests whether the language accepted by the
automaton A is infinite (Hint: you may start by looking for a loop in the state-table. To facilitate testing,
you need to define a new automaton called infTest. The language accepted by infTest is infinite). You
can test the predicate by providing test cases such as:

?- infinite(infTest).

True.

Department of Computer Science and Engineering York University

4

Question 2: Conversion to Conjunctive Normal Form (55 Points)

Write a program for converting a propositional formula into conjunctive normal form. The main

predicate of this program, normalize(PF, CNF), takes PF , which is a propositional formula as

input from the user. This formula is converted to conjunctive normal form and CNF is instantiated with

the result.

Proposition symbols can be any Prolog atoms, except for ‘v’ which will be defined as the ‘or’ operator. In

addition to the propositional symbols, the formula may contain one or more of the following

connectives: implication (=>), equivalence (<=>), negation (-), conjunction (&) and disjunction (v) . The

operators can be declared as follows:

:- op(800, xfy, [&]). /* Conjunction */

:- op(850, xfy, [v]). /* Disjunction */

:- op(870, xfy, [=>]). /* Implication */

:- op(880,xfy, [<=>]). /* Equivalence */

For negation, you can use [-] which is a predefined operator in Prolog (a list of predefined operators is

available at: http://www.swi-prolog.org/pldoc/doc_for?object=op/3).

It might be helpful to follow the same order of steps explained in the slides Inference in First-Order Logic

while converting the formula to CNF. Note that since the normalize(PF, CNF) predicate accepts

propositional formula as input, your program does not have to carry out the following steps:

Standardizing Variables, Skolemizing and Converting to Prenix form.

You may test this predicate by running test cases such as:

?- normalize(- b => c & d , CNF).

CNF = ((b v c) & (b v d)).

?- normalize((q => e) & c, CNF).

CNF = ((–q v e) & c).

https://mail.cse.yorku.ca/services/go.php?url=http%3A%2F%2Fwww.swi-prolog.org%2Fpldoc%2Fdoc_for%3Fobject%3Dop%2F3
https://wiki.cse.yorku.ca/course_archive/2012-13/W/3401/_media/slide04.pdf

