
Department of Computer Science and Engineering York University

1

CSE 3401 Assignment 3
Winter 2013

Date out: March 5. Date due: March 24, at 11:55 pm

 The submitted assignment must be based on your individual work. Review the Academic
Honesty Guidelines for more details.

 This assignment constitutes 6% of your total mark for the course and is marked out of 100.

 You should adhere to the coding guidelines posted on the website; comment your code and test
it thoroughly.

 You may define any auxiliary relations if that helps in defining the required predicates.

 You should Submit 3 files for this assignment:

 a3.pl, which is the source code of your solutions for question 1 (Q1.a to Q1.e). Start from
the file a3.txt (available in the resources section of this assignment) which already contains
some of the code you need and fill in the missing parts. Rename this file to a3.pl before
editing.

 a3test.txt, which consists of the test cases you have used to test question 1, as well as the
results of testing. Include a header with your name, student number and cse login.

 a3.pdf which consists of your answers to Section 2. Include a header with your name,
student number and cse login.

Soft Copies: Gather all the required files in a directory named a3answers and submit it
electronically by the deadline. To submit electronically, use the following Prism lab
command:

submit 3401 a3 a3answers

Alternatively, you may use web submit (https://webapp.cse.yorku.ca/submit/) and choose
the correct course and assignment number to upload your files.

http://www.cse.yorku.ca/admin/coscOnAcadHonesty.html
http://www.cse.yorku.ca/admin/coscOnAcadHonesty.html
http://www.cse.yorku.ca/admin/coscOnAcadHonesty.html
https://wiki.cse.yorku.ca/course_archive/2012-13/W/3401/_media/swiprologgettingstarted.pdf
https://webapp.cse.yorku.ca/submit/

Department of Computer Science and Engineering York University

2

Question 1: Prolog Programming (60 Points)

In this assignment you are going to implement a solver to a path finding problem using three different

search algorithms: A*, A* with cycle-checking and IDA*. We are providing you with the generic

implementations of these algorithms in Prolog:

1. A* search with path checking (astar.pl).

2. A* search with cycle checking (astarCC.pl).

3. IDA* search with path checking (idastar.pl).

These files are available online in the resources section of this assignment. They use some common code

from astarcommon.pl. Some simple examples of search spaces that show how to use these algorithms

are also provided in the resources section (simpleSpace.pl, and waterjugs.pl). These files are uploaded

with txt extension, and the names are all in lowercase letters. Before working with them, you need to

rename them as explained in the appendix.

Your task is to formulate a path finding problem in a grid (based on a variation of the Wumpus world) as

a search problem and to run experiments with the algorithms provided. Consider the following grid,

which is a variation of the Wumpus world:

 1 2 3 4

 1

 2

 3

 4

 Figure 1: a starting configuration (a)

The Wumpus world is a N×N grid of squares. The world contains a robot, a pile of gold, and any number

of pits. Each of these items is in a square of the grid. The robot cannot legally move into a pit (it has to

avoid the squares which contain a pit). The robot may start in any square of the grid (unless it contains a

pit) and it can only move one position at a time to right, left, up or down. The gold may also be in any

square of the grid, except for the squares that contain a pit (the sample configurations in figures 1 and 2

show the gold at (4,4), but in general, this may not be the case). In Figure 1, the robot is located at the

starting position (1,1) of the grid and has to move to the position of the gold, which is at (4,4).

The objective of the game is to find the shortest path the robot can take from the starting point to the

goal, which is the square that contains the gold.

Robot

Pit

Gold Pit

Department of Computer Science and Engineering York University

3

 Configuration (b)

 Configuration (c)

Figure 2: Sample starting configurations

Your implementation of this search problem will include the following:

Q1.a State Representation

Decide how you want to represent the configuration of the described Wumpus world. Then write down
the representation for the various world configurations shown in figures 1(a) and 2(b, c). Fill the
corresponding predicates in a3.pl, init(+Name, -State) where Name is the letter in the figure
(i.e. a, b, c) and State is your representation of the configuration. In addition to the configurations in
figures 1 and 2, you may define your own configurations.

Q1.b Goal Predicate

Implement the predicate goal(+State) that holds if and only if State is a goal state. Note that we
require you to implement this predicate, as well as the ones for questions Q1.c, Q1.d and Q1.e, so that it
works for any size of grid. This may at first seem more difficult than it is. Some form of counting will do.

Q1.c Successors Predicate

Implement the predicate successors(+State, -Neighbors) that holds if and only if

Neighbors is a list of elements (Cost, NewState) where NewState is a state reachable from
State by moving down, left, right, or up and Cost is the cost of doing so. Assume that the cost of
every move is constant and equal to 1 in this problem (Hint: Neighbors list should not contain squares
that contain a pit).

Robot

 Robot

Pit

Gold Pit

Pit

Pit

Pit Pit

Gold

Pit

Department of Computer Science and Engineering York University

4

Q1.d Equality Predicate

Implement the predicate equality(+State1, +State2) which holds if and only if State1 and
State2 denote the same state.

Q1.e Heuristic Predicates

In a3.pl the null heuristic hfn_null/2 is already given. In addition, implement the following three
heuristics:

 hfn_Euclidean(+State, -V) where V is the rounded Euclidean distance from the
current state to the goal. The Euclidean distance between points A(X1,Y1) and B(X2,Y2) is
calculated as:

= 𝑋1 − 𝑋2 2 + 𝑌1 − 𝑌2 2

For example, in Figure 1, the value of rounded Euclidean distance between the starting position
of the robot (1,1) and the gold (4,4) is 4. (You may use the Prolog predicate Floor/1 for
rounding the number)

 hfn_Manhattan(+State, -V) where V is the sum of horizontal and vertical distances

between the current state and the goal position. The Manhattan distance between points A(X1,
Y1) and B(X2,Y2) is calculated as:

= 𝑎𝑏𝑠 𝑋1 − 𝑋2 + 𝑎𝑏𝑠(𝑌1 − 𝑌2)

For example, in Figure 1, the Manhattan distance between the robot’s starting position (1,1) and
the gold (4,4) is 6.

 hfn_Diagonal(+State, -V) where V is the maximum value of the horizontal and vertical
distances between the current state and the goal position. The Diagonal distance between
points A(X1, Y1) and B(X2,Y2) is calculated as:

= max⁡(𝑎𝑏𝑠 𝑋1 − 𝑋2 , 𝑎𝑏𝑠 𝑌1 − 𝑌2)

Finally, run the test cases you just implemented using the various heuristics. You can do so by calling
the predicates go/2,goCC/2,goIDA/2. For instance, go(a, hfn_Manhattan) will try to solve
problem (a) using A* search together with the heuristic made up from the sum of horizontal and vertical
distances.

You may define any number of configurations and use them as test cases too. In your answers, do not
use features of Prolog that have side effects, such as assert and retract.

Department of Computer Science and Engineering York University

5

Question 2: Discussion (40 Points)

Q2.a Which of the four heuristics (hfn_null, hfn_Euclidean, hfn_Manhattan and hfn_Diagonal) are

admissible? For those that are not admissible, provide a counter example.

Q2.b Assume that for the action of moving to the right, the cost has changed from 1 to 0.5, and all the

other moves have the same cost (1). Explain how this might affect the admissibility of the above four

heuristics. For any which is not admissible, provide a counter example.

Q2.c Assume a variant of the Wumpus world (explained in question 1) that contains obstacles instead of

pits. In this case, the robot does not have to avoid such squares and the cost of moving into them is 2,

while the cost of moving into other squares is 1. Explain how this might affect the admissibility of the

above four heuristics. For any which is not admissible, provide a counter example.

Q2.d Run your implementation on each of the 3 sample configurations using the 3 algorithms and the 4

heuristics, and fill out the table below. If you have run tests with your own sample configurations, you

may add them to the table. Based on these results, provide a summary of quality of the heuristics and

the search routines.

Configuration Heuristic Used A* - Nodes
Expanded

A* Cycle Checking
Nodes Expanded

IDA* - Nodes
Expanded

a Null

a Manhattan

a Euclidean Distance

a Diagonal Distance

b Null

b Manhattan

b Euclidean Distance

b Diagonal Distance

c Null

c Manhattan

c Euclidean Distance

c Diagonal Distance

… …

Q2. e Which heuristic dominates the others (i.e. is most informative) ?

Department of Computer Science and Engineering York University

6

Appendix

Uploaded File: Rename To:

a3.txt a3.pl

astar.txt astar.pl

astarcc.txt astarCC.pl

astarcommon.txt astarcommon.pl

idastar.txt idastar.pl

simplespace.txt simpleSpace.pl

waterjugs.txt waterjugs.pl

