
1COSC3401-05-9-13

Introduction to Functional
Programming and basic Lisp

Based on Slides by

Yves Lespérance & Peter Roosen-Runge

2COSC3401-05-9-13

Functional vs Declarative Programming

 declarative programming uses logical
statements to describe objects.

 Prolog is an example of this kind of language.

 functional programming uses
mathematical functions and functional
expressions to describe objects.

 Functional programming has its roots in
lambda calculus

 Lisp is a functional language.

http://en.wikipedia.org/wiki/Lambda_calculus

3COSC3401-05-9-13

Functional Programming

 Functional programming is not based on
assignments that change the state.

 Functions specify other values in terms
of existing data without changing it.

 This allows all sorts of clever
implementations e.g. on parallel
hardware.

4COSC3401-05-9-13

Background on LISP

 Acronym for LISt Processing

 created by the AI pioneer John McCarthy

widely used in research on AI for over 40
years.

Used in industry to develop expert systems & other AI
applications

 found inside applications like Emacs and
AutoCAD as an embedded language

makes the embedding application easily extensible

5COSC3401-05-9-13

Lisp as an extensional
language

 embedding Lisp makes it easy to extend
an application

 creation of new languages built "on"
Lisp

 industrial-strength versions are usually
standardized on Common Lisp

6COSC3401-05-9-13

LISP Interpreter

 An interactive environment, always
evaluating input

 To run LISP at prism labs, type:

"clisp“

To exit: Ctrl+D

 To load the file lp.lsp, in C:\MyFolder, use the
following command:
(load “C://MyFolder/lp.lsp”)

7COSC3401-05-9-13

S-expressions

 A symbolic expression (s-expression) is
defined inductively as

 an atom (number or word), or

 dotted pair of s-expressions (e.g. (x.y)
where x and y are s-expressions)

 lists are the main kind of s-expressions

 Example: (a b c) or a. (b . (c . nil)) - nil is
the same as () - the only atom that is a list

8COSC3401-05-9-13

disassembly

 functions which extract the two parts of
a dotted pair:

 first extracts the first part,

also called car

 rest extracts the second part,

also called cdr

http://en.wikipedia.org/wiki/Mathematical_induction

9COSC3401-05-9-13

contents of a dotted-pair

first rest

atom or dotted pair atom or dotted pair

10COSC3401-05-9-13

new names for old

 car = function which returns the
content referenced by address-register

 cdr = function which returns content
referenced by decrement register

many books cling to car and cdr for
'backwards compatibility'.

 can use first and rest

 you can use either - the Lisp interpreter
doesn‟t care.

11COSC3401-05-9-13

list structure

first rest

nil or listatom or dotted pair

12COSC3401-05-9-13

functional expressions

 terms (functional expressions) are
represented as lists

write f(x, y) as (f x y).

(a b c) represents the term a(b, c).

 already we see a bit of the power of
symbolic computing:

 expressions have same form as data

 a function name is just an atom (a symbol)

 could itself be computed

13COSC3401-05-9-13

evaluating functions

 evaluating (function arg1 arg2 . .)

 applies the system function eval to each
argument

then applies the function to the results

 (+ 2 (+ 3 5))

eval(2) = 2

eval((+ 3 5)) = +(eval(3), eval(5)) = +(3,5) = 8

+ (2, 8) = 10

14COSC3401-05-9-13

blocking evaluation

 try evaluating

 (reverse (a b)) --> error

no function a defined

 (reverse (+ 1 2)) --> error

“3” is not a list

 how to block evaluation of an s-
expression?

 quote it

15COSC3401-05-9-13

the uses of quotation

 try evaluating

 (reverse (quote (a b))) --> (B A)

quote returns its argument unevaluated

 (reverse '(+ 1 2)) --> (2 1 +)

'<s-expression> = (quote <s-expression>)

 (equal '(reverse (a b)) '(b a))) ?

 NIL -- why?

 (equal (reverse '(reverse (a b))) '((a b)
reverse)))

 T

16COSC3401-05-9-13

List Processing Functions

> (car „(a b c)) --> A

> (cdr „(a b c)) --> (B C)

> (car(cdr(car „((a b))))) --> (B)

 Other built-in functions for list processing
include: cons, append, list, …

> (cons „a „(b c)) --> (A B C)

> (append „(a) „(b) „(c)) --> (A B C)

> (list „a „b „c) --> (A B C)

17COSC3401-05-9-13

oceans of functions

 the basis for Lisp programs is the
concept of a function

 and variants with special properties

 Common Lisp has several hundred
built-in functions

many are redundant - could be replaced
by expressions involving other functions

18COSC3401-05-9-13

Function definitions

 Written as (defun function-name arg-list
result-spec).

 function-name is a symbol.

 arg-list is a list of symbols, the parameters.

 result-spec is an expression whose value is the
result of the function.

 When a function application is evaluated,
substitute actual arguments for parameters in
result-spec and return its value.

19COSC3401-05-9-13

Function Example 1

> (defun avg (x y) (/ (+ x y) 2.0))

AVG

> (avg 1 2)

1.5

20COSC3401-05-9-13

Function Example 2

 Rewrite (John P Doe) as (Doe John P)

 (defun last_name_first (name_list)

(cons (third name_list)

(cons (first name_list)

(cons (second name_list)
nil))))

21COSC3401-05-9-13

Functions in LISP

 functions are considered as first class objects in
Lisp.

 A function can take another function as an
argument and a function can return a function as
a value.

 This is what make functional programming very
powerful.

 In a sense you can define your own control
structures and manipulate programs!

22COSC3401-05-9-13

More ….

 „Practical Common Lisp‟ Book online

http://www.gigamonkeys.com/book/

Notes on Lambda Calculus
http://www.mathstat.dal.ca/~selinger/papers/la
mbdanotes.pdf

http://www.gigamonkeys.com/book/
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf

