Recursion, divide \& conquer, text processing

Yves Lespérance
Adapted from Peter Roosen-Runge

finite state automata

- a finite state automaton ($\left.\Sigma, S, s_{0}, \delta, F\right)$ is a representation of a machine as a
- finite set of states S
- a state transition relation/table δ
- mapping current state \& input symbol from alphabet Σ to the next state
- an initial state s_{0}
- a set of final states F

accepting an input

- a fsa accepts an input sequence from an alphabet Σ if, starting in the designated starting state, scanning the input sequence leaves the automaton in a final state
- sometimes called recognition
- e.g. automaton that accepts strings of x 's and y 's with an even number of x 's and an odd number of $y^{\prime} s$

example

- automaton that accepts strings of $x^{\prime} s$ and y 's with an even number of x 's and an odd number of y 's
- idea: keep track of whether we have seen even number of x 's and y 's
- $S=\{$ ee, eo, oe, oo $\}$
- $\mathrm{S}_{0}=\mathrm{ee}$
- $\delta=\{(e e, x, o e),(e e, y, e o), \ldots\}$
- $F=\{e o\}$

example

- initial_state(ee).
- final_states([eo]).
- next_state(ee,x,oe).
- next_state(ee,y,eo).
- next_state(oe,x,ee).
- next_state(oe,y,oo).
- next_state(oo,x,eo).
- next_state(oo,y,oe).

- next_state(eo,x,oo).
- next_state(eo,y,ee).

implementation

- fsa(Input) succeeds if and only if the fsa accepts or recognizes the sequence (list) Input.
- initial state represented by a predicate - initial_state(State)
- final states represented by a predicate - final_states(List)
- state transition table represented by a predicate
- next_state(State, InputSymbol, NextState)
- note: next_state need not be a function

implementing fsa/ 1

- fsa(Input) :- initial_state(S), scan(Input, S).
\% scan is a Boolean predicate
- scan([], State) :- final_states(F), member(State, F).
- scan([Symbol | Seq], State) :next_state(State, Symbol, Next), scan(Seq, Next).

result propagation

- scan uses pumping/result propagation
- carries around current state and remainder of input sequence
- if FSA is deterministic, when end of input is reached, can make an accept/reject decision immediately; tail recursion optimization can be applied
- if FSA is nondeterministic, may have to backtrack; must keep track of remaining alternatives on execution stack

non-determinism

- a non-deterministic fsa accepts an input sequence if there exists at least one sequence which leaves the automaton in one of its final states
- ?- fsa(Input).
- scan searches through all possible choices for Symbol at each state;
- fails only if no sequence leads to a final state

representing tables

- can use binary connector, e. g., A-B-C instead of next_state(A, B,C)
- reduces typing;
- can make it easier to check for errors
- ee-x-oe. ee-y-eo.
- oe-x-ee. oe-y-oo.
- etc.

revised version

$\operatorname{scan}([]$, State $):-$ final_states(F),
member(State, F).
scan([Symbol | Seq], State) :-State-Symbol-Next, scan(Seq, Next).

divide and conquer

divide and conquer

- algorithm design technique
- key idea: reduce problem to two subproblems of about equal size
- e.g. mergesort
- tournament example minimize number of matches required to fairly determine
- winner
- runner-up

tournament definitions

- runner-up is the winner of a subtournament among losers to winner by definition, winner has not lost any tournament match
losers to winner are all themselves winners except for the loser of the winner's 1st game
so we don't need a sub-tournament among all other players, just those who lost to winner

minimum matches

- minimum matches required to determine winner $=n-1$
- why?
- every one except the winner is eliminated by a loss to someone
- every loss requires a match
- n -1 losers implies $\mathrm{n}-1$ matches
- minimum \# of matches for the runnerup?

winner's matches

- we only need matches between those who lost to winner
-how many?
- winner need play no more than ceiling $\left(\log _{2} n\right.$) matches proof based on idea that number of matches = length of path from root to leaf of a binary tree containing n nodes
shortest path is in a balanced tree

total \# of matches

- total matches = matches to determine winner $=\mathrm{n}-1$ + matches to determine runner-up $=$ $\mathrm{n}-1+\log _{2} \mathrm{n}-1$ $\mathrm{n}+\log _{2} \mathrm{n}-2$

defining a tournament

tournament(Field, Winner, RunnerUp) :round(Field, Winner-Runners), round(Runners, RunnerUp-_).

fixing the match

- can use binary connector Competitor-LoserList

```
match(C1-L1, C2-_, C1-[C2-[] | L1]) :-
    order(C1,C2).
match(C1-_, C2-L2, C2-[C1-[] | L2]) :-
    not order(C1, C2).
```


implementing a round

```
round([X],X).
round([C1, C2], Winner) :-
    match(C1, C2, Winner).
round([C1, C2, C3 | R], Winner) :-
    split([C1, C2, C3 | R], Group1, Group2),
    round(Group1, Winner1),
    round(Group2, Winner2),
    match(Winner1, Winner2, Winner).
```

- are rules ordered as expected?
yes -- from specific to general
parsing text and definite clause grammars

Prolog representation for parsing text

- want to parse natural language text
- one way to represent grammar rules: sentence --> noun_phrase, verb_phrase. stands for
sentence (X) :- append (Y, Z, X), noun_phrase(Y), verb_phrase(Z). determiner --> [the].
stands for
determiner([the]).
- must guess how to split the sequence, inefficient; let constituent parsers decide

a better representation

- sentence(S0,S):-
noun_phrase(S0,S1), verb_phrase(S1,S).
- determiner([the | S],S).
- 1st argument is sequence to parse and 2nd argument is what is left after removing it
- Rule means "there is a sentence between S0 and S if
- ?-sentence([the, boy, drinks, the, juice], []). succeeds
- ?-noun_phrase([the, boy, drinks, the, juice], R). succeeds with $R=$ [drinks, the, juice]

definite clause grammar (DCG) notation

sentence -->
noun_phrase,verb_phrase. stands for
sentence(S0,S):- noun_phrase(S0,S1), verb_phrase(S1,S).
determiner --> [the]. stands for determiner([the|S],S).

enforcing constraints between constituents

- suppose we want to enforce number agreement
- can add extra argument to pass this info between constituents
- noun_phrase(N) --> determiner(N), noun(N).
- noun(singular) --> [boy].
- noun(plural) --> [boys].
- determiner(singular) --> [a].
- ?- noun_phrase(N,[a, boys],[]). fails
- ?- noun_phrase(N,[a, boy],[]). succeeds with $\mathrm{N}=$ singular

returning a parse tree or interpretation

- Extra arguments can also be used to return a parse tree or interpretation
- noun_phrase(np(D,N)) --> determiner(D), noun(N).
- determiner(determiner(a)) --> [a].
- noun(noun(boy)) --> [boy].
- ?- noun_phrase(PT,[a, boy],[]). succeeds with PT $=n p($ determiner(a), noun(boy))

adding extra tests

- can invoke predicates for tests or interpretation by putting between $\}$
- don't match input tokens
- e.g. accessing a lexicon
- noun(N,noun(W)) --> [W], $\{$ is_noun $(W, N)\}$.
- is_noun(boy,singular).

grammar writing tips

- good grammars:
- are very modular
- achieve broad coverage with small number of rules
- collecting a corpus of examples can help design and test grammar
- identify patterns built out of certain types of constituents

Prolog \& text processing

- Prolog good for analyzing and generating text
- parsing involves pattern-matching
- text \& parse-trees are recursive data structures
- text patterns involve many alternatives, backtracking is helpful
- steadfast predicates can analyze and generate

modeling and analyzing concurrent processes

process algebra

- concurrent programs are hard to implement correctly
- many subtle non-local interactions
- deadlock occurs when some processes are blocked forever waiting for each other
- process algebra are used to model and analyze concurrent processes

deadlocking system example

- defproc(deadlockingSystem, user1 | user2 \$ lock1s0 | lock2s0 | iterDoSomething).
- defproc(user1, acquireLock1 > acquireLock2 > doSomething $>$ releaseLock \gg releaseLock1).
- defproc(user2, acquireLock2 > acquireLock1 $>$ doSomething $>$ releaseLock1 > releaseLock2).

deadlocking system example

defproc(lock1s0,
acquireLock1 > lock1s1 ? 0).
defproc(lock1s1, releaseLock1 > lock1s0).
defproc(lock2s0, acquireLock2 > lock2s1? 0).
defproc(lock2s1,releaseLock2 > lock2s0).
defproc(iterDoSomething, doSomething > iterDoSomething ? 0).

transition relation

- P - A - RP means that P can do a single step by doing action A and leaving program RP remaining
- empty program: $0-\mathrm{A}-\mathrm{P}$ is always false.
- primitive action: A - A - 0 holds, i. e., an action that has completed leaves nothing more to be done.
- sequence: ($\mathrm{A}>\mathrm{P}$) - A - P
- nondeterministic choice: $\left(\mathrm{P}_{1}\right.$? $\left.\mathrm{P}_{2}\right)$ - $\mathrm{A}-\mathrm{P}$ holds if either $P_{1}-A-P$ holds or $P_{2}-A-P$ holds.

transition relation

- interleaved concurrency: $\left(\mathrm{P}_{1} \mid \mathrm{P}_{2}\right)$ - $\mathrm{A}-\mathrm{P}$ holds if either $P_{1}-A-P_{11}$ holds and $P=\left(P_{11} \mid P_{2}\right)$, or $P_{2}-A-$ P_{21} holds and $P=\left(P_{1} \mid P_{21}\right)$
- synchronized concurrency: $\left(\mathrm{P}_{1} \$ \mathrm{P}_{2}\right)$ - $\mathrm{A}-\mathrm{P}$ holds if both $P_{1}-A-P_{11}$ holds and $P_{2}-A-P_{21}$ holds and $P=$ (P_{11} \$ P_{21})
- recursive procedures: ProcName - A - P holds if ProcName is the name of a procedure that has body B and B - A - P holds.

can check properties by searching process graph

- a process has an infinite execution if there is a cycle in its configuration graph
- e.g. defproc(aloop, a > aloop)
- has_infinite_run(P):-P - _ - PN, has_infinite_run(PN,[P]).
- has_infinite_run(P, V):- member(P, V), !.
- has_infinite_run(P,V):-P - - - PN, has_infinite_run(PN,[P|V]).

checking properties by searching process graph

- cannot_occur(P,A) holds if no execution of P where action A occurs
- search graph for a transition P1 - A - P2
- useful built-in predicate: forall(+Cond, +Action) holds iff for all bindings of Cond, Action succeeds
- e.g. forall(member(C,[8,3,9]), C >= 3) succeeds

cannot_occur examples

- ?- cannot_occur(a > b | a > c, b). succeeds or fails?
- ?- cannot_occur((a > b | a > c)\$(a > c), b). succeeds or fails?

whenever_eventually

- whenever_eventually ($\mathrm{P}, \mathrm{A} 1, A 2$) holds if in all executions of P whenever action A1 occurs, action A2 occurs afterwards
- ?- whenever_eventually(a > b > a , a, b). succeeds or fails?
- ?- whenever_eventually $(a>b \mid a>c$, a, b). succeeds or fails?

whenever_eventually examples

- ?- whenever_eventually(loop1, a, b). succeeds or fails, where defproc(loop1, a > b > loop1)?
- ?- whenever_eventually(loop1, b, a). succeeds or fails, where defproc(loop1, a > b > loop1)?
- ?- whenever_eventually(loop2, b, a). succeeds or fails, where defproc(loop2, $a>b>($ loop2 ? 0)).

deadlock_free

- deadlock_free(P) holds if process P cannot reach a deadlocked configuration, i.e. one where the remaining process is not final, but no transition is possible
- ?- deadlock_free(a \$ a). succeeds or fails?
- ?- deadlock_free(a > a \$ a). succeeds or fails?

deadlock_free examples

- ?- deadlock_free(loop3 \$ a). where defproc(loop3, (a > loop3) ? 0))
succeeds or fails?

