
•3/10/2013

•1

1CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

CSE 3401: Intro to AI & LP
Informed Search

●Required Readings: Chapter 3, Sections 5 and
6, and Chapter 4, Section 1.

2CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Heuristic Search.

●In uninformed search, we don’t try to
evaluate which of the nodes on the frontier
are most promising. We never “look-ahead”
to the goal.

■ E.g., in uniform cost search we always expand the
cheapest path. We don’t consider the cost of
getting to the goal.

●Often we have some other knowledge about
the merit of nodes, e.g., going the wrong
direction in Romania.

•3/10/2013

•2

3CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Heuristic Search.

●Merit of a frontier node: different
notions of merit.
■ If we are concerned about the cost of the

solution, we might want a notion of merit
of how costly it is to get to the goal from
that search node.

■ If we are concerned about minimizing
computation in search we might want a
notion of ease in finding the goal from
that search node.

■We will focus on the “cost of solution”
notion of merit.

4CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Heuristic Search.

●The idea is to develop a domain specific
heuristic function h(n).

●h(n) guesses the cost of getting to the goal
from node n.

●There are different ways of guessing this cost
in different domains. I.e., heuristics are domain
specific.

•3/10/2013

•3

5CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Heuristic Search.

●Convention: If h(n1) < h(n2) this means that we
guess that it is cheaper to get to the goal from
n1 than from n2.

●We require that

■ h(n) = 0 for every node n that satisfies the goal.

● Zero cost of getting to a goal node from a goal
node.

6CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Using only h(n)
Greedy best-first search.

● We use h(n) to rank the nodes on open.
■ Always expand node with lowest h-value.

● We are greedily trying to achieve a low cost solution.

● However, this method ignores the cost of getting to n, so it
can be lead astray exploring nodes that cost a lot to get to
but seem to be close to the goal:

S

n1

n2

n3

Goal

→ cost = 10

→ cost = 100

h(n3) = 50h(n1) = 200

•3/10/2013

•4

7CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

A* search

● Take into account the cost of getting to the node as
well as our estimate of the cost of getting to the
goal from n.

● Define

■ f(n) = g(n) + h(n)

● g(n) is the cost of the path to node n

● h(n) is the heuristic estimate of the cost of getting to a
goal node from n.

● Now we always expand the node with lowest f-
value on the frontier.

● The f-value is an estimate of the cost of getting to
the goal via this node (path).

8CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Conditions on h(n)

●We want to analyze the behavior of the
resultant search.

●Completeness, time and space, optimality?

●To obtain such results we must put some
further conditions on the heuristic function
h(n) and the search space.

•3/10/2013

•5

9CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Conditions on h(n): Admissible

●c(n1→ n2) ≥ ε > 0. The cost of any
transition is greater than zero and can’t be
arbitrarily small.

●Let h*(n) be the cost of an optimal path
from n to a goal node (if there is no path).
Then an admissible heuristic satisfies the
condition
■ h(n) ≤ h*(n)

● i.e. h always underestimates of the true cost.

●Hence
■ h(g) = 0

■ For any goal node “g”

10CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consistency/monotonicity.

● Is a stronger condition than h(n) ≤ h*(n).

● A monotone/consistent heuristic satisfies the
triangle inequality (for all nodes n1,n2):

h(n1) ≤ c(n1 → n2) + h(n2)

●Note that there might be more than one
transition (action) between n1 and n2, the
inequality must hold for all of them.

●As we will see, monotonicity implies
admissibility.

•3/10/2013

•6

11CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Intuition behind admissibility

●h(n) ≤ h*(n) means that the search
won’t miss any promising paths.

■ If it really is cheap to get to a goal via n
(i.e., both g(n) and h*(n) are low), then f(n)
= g(n) + h(n) will also be low, and the
search won’t ignore n in favor of more
expensive options.

■This can be formalized to show that
admissibility implies optimality.

12CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Intuition behind monotonicity

●h(n1) ≤ c(n1→n2) + h(n2)

■This says something similar, but in
addition one won’t be “locally” mislead.
See next example.

•3/10/2013

•7

13CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Example: admissible but nonmonotonic
● The following h is not consistent since h(n2)>c(n2→n4)+h(n4). But it is admissible.

S

n1

n3

n2

Goal

→ cost = 200

→ cost = 100

{S} → {n1 [200+50=250], n2 [200+100=300]}

→ {n2 [100+200=300], n3 [400+50=450]}

→ {n4 [200+50=250], n3 [400+50=450]}

→ {goal [300+0=300], n3 [400+50=450]}

We do find the optimal path as the heuristic is still

admissible. But we are mislead into ignoring n2 until

after we expand n1.

n4

h(n2) = 200

h(n4) = 50

h(n1) =50

h(n3) =50

14CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Monotonicity implies admissibility

Proof: by induction on number of steps to a goal node M.

 Base case: If n is a goal node, then h(n) = 0 = h*(n), so h(n)
≤ h*(n).

 Induction step: Assume that h(nk) ≤ h*(nk) if number of
steps to goal at nk is at most K. Show that the proposition
must hold for nodes nk+1where number of steps to goal is
K+1.

 Let nk be the next node along a shortest path from nk+1
to goal

 h(nk+1) ≤ c(nk nk+1) + h(nk), since h is monotone

 h(nk) ≤ h*(nk), by induction hypothesis

 So h(nk+1) ≤ c(nk nk+1) + h*(nk)

 Thus h(nk+1) ≤ h*(nk+1)

 If goal is unreachable from a node n, then h*(n) = and
result trivially holds.

•3/10/2013

•8

15CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity

1. The f-values of nodes along a path must be
non-decreasing.

■ Let <Start→ n1→ n2…→ nk> be a path. We claim
that

f(ni) ≤ f(ni+1)

■ Proof:

f(ni) = c(Start→ …→ ni) + h(ni)
≤ c(Start→ …→ ni) + c(ni→ ni+1) + h(ni+1)
= c(Start→ …→ ni→ ni+1) + h(ni+1)
= g(ni+1) + h(ni+1)
= f(ni+1).

16CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity

2. If n2 is expanded after n1, then f(n1) ≤ f(n2)

Proof:

■ If n2 was on the frontier when n1 was expanded,

● f(n1) ≤ f(n2)

otherwise we would have expanded n2.

■ If n2 was added to the frontier after n1’s expansion, then let
n be an ancestor of n2 that was present when n1 was being
expanded (this could be n1 itself). We have f(n1) ≤ f(n) since
A* chose n1 while n was present in the frontier. Also, since n
is along the path to n2, by property (1) we have f(n)≤f(n2).
So, we have

● f(n1) ≤ f(n2).

•3/10/2013

•9

17CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity

3. When n is expanded every path with lower f-value
has already been expanded.

 Assume by contradiction that there exists a path
<Start, n0, n1, ni-1, ni, ni+1, …, nk> with f(nk) < f(n) and ni is
its last expanded node.

 Then ni+1 must be on the frontier while n is expanded:

a) by (1) f(ni+1) ≤ f(nk) since they lie along the same path.

b) since f(nk) < f(n) so we have f(ni+1) < f(n)

c) by (2) f(n) ≤ f(ni+1) since n is expanded before ni+1.

* Contradiction from b&c!

18CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity

4. With a monotone heuristic, the first time A*
expands a state, it has found the minimum cost
path to that state.

 Proof:

* Let PATH1 = <Start, n0, n1, …, nk, n> be the first path
to n found. We have f(path1) = c(PATH1) + h(n).

* Let PATH2 = <Start, m0,m1, …, mj, n> be another path
to n found later. we have f(path2) = c(PATH2) + h(n).

* By property (3), f(path1) ≤ f(path2)

* hence: c(PATH1) ≤ c(PATH2)

•3/10/2013

•10

19CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity

● Complete.
 Yes, consider a least cost path to a goal node

● SolutionPath = <Start→ n1→ …→ G> with cost
● c(SolutionPath)
● Since each action has a cost ≥ ε > 0, there are only a finite

number of nodes (paths) that have cost ≤ c(SolutionPath).
● All of these paths must be explored before any path of

cost > c(SolutionPath).
● So eventually SolutionPath, or some equal cost path to a

goal must be expanded.

● Time and Space complexity.
 When h(n) = 0, for all n

● h is monotone.
 A* becomes uniform-cost search!
 It can be shown that when h(n) > 0 for some n, the number of

nodes expanded can be no larger than uniform-cost.
 Hence the same bounds as uniform-cost apply. (These are

worst case bounds).

20CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity

● Optimality

 Yes, by (4) the first path to a goal node must
be optimal.

● Cycle Checking

 If we do cycle checking (e.g. using GraphSearch
instead of TreeSearch) it is still optimal.
Because by property (4) we need keep only the
first path to a node, rejecting all subsequent
paths.

•3/10/2013

•11

21CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Search generated by monotonicity

22CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Admissibility without monotonicity

● When “h” is admissible but not monotonic.
■ Time and Space complexity remain the same. Completeness holds.

■ Optimality still holds (without cycle checking), but need a different
argument: don’t know that paths are explored in order of cost.

● Proof of optimality (without cycle checking):
■ Assume the goal path <S,…,G> found by A* has cost bigger than the

optimal cost: i.e. C* < f(G).

■ There must exists a node n in the optimal path that is still in the frontier.

■ We have: f(n)=g(n)+h(n) ≤ g(n)+h*(n)=C* < f(G)

■ Therefore, f(n) must have been selected before G by A*. contradiction!

•3/10/2013

•12

23CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Admissibility without monotonicity

● No longer guaranteed we have found an optimal path to a
node the first time we visit it.

● So, cycle checking might not preserve optimality.
■ To fix this: for previously visited nodes, must remember cost of

previous path. If new path is cheaper must explore again.

● contours of monotonic heuristics don’t hold.

Space problem with A* (like breath-first search):

IDA* is similar to Iterative Lengthening Search: It puts the newly
expanded nodes in the front of frontier! Two new parameters:

●curBound (any node with a bigger f value is discarded)

●smallestNotExplored (the smallest f value for discarded nodes
in a round) when frontier becomes empty, the search starts a new
round with this bound.

24CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Building Heuristics: Relaxed Problem

● One useful technique is to consider an easier
problem, and let h(n) be the cost of reaching the
goal in the easier problem.

● 8-Puzzle moves.

■ Can move a tile from square A to B if

● A is adjacent (left, right, above, below) to B

● and B is blank

● Can relax some of these conditions

1. can move from A to B if A is adjacent to B (ignore
whether or not position is blank)

2. can move from A to B if B is blank (ignore adjacency)

3. can move from A to B (ignore both conditions).

•3/10/2013

•13

25CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Building Heuristics: Relaxed Problem

● #3 leads to the misplaced tiles heuristic.
■ To solve the puzzle, we need to move each tile into its

final position.

■ Number of moves = number of misplaced tiles.

■ Clearly h(n) = number of misplaced tiles ≤ the h*(n) the
cost of an optimal sequence of moves from n.

● #1 leads to the manhattan distance heuristic.
■ To solve the puzzle we need to slide each tile into its

final position.

■ We can move vertically or horizontally.

■ Number of moves = sum over all of the tiles of the
number of vertical and horizontal slides we need to move
that tile into place.

■ Again h(n) = sum of the manhattan distances ≤ h*(n)

●in a real solution we need to move each tile at least
that that far and we can only move one tile at a time.

26CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Building Heuristics: Relaxed Problem

Depth IDS A*(Misplaced) A*(Manhattan)

10 47,127 93 39

14 3,473,941 539 113

24 --- 39,135 1,641

Let h1=Misplaced, h2=Manhattan
● Does h2 always expand less nodes than h1?

■ Yes! Note that h2 dominates h1, i.e. for all n: h1(n)≤h2(n). From this
you can prove h2 is faster than h1.

■ Therefore, among several admissible heuristic the one with highest
value is the fastest.

● The optimal cost to nodes in the relaxed problem is an admissible
heuristic for the original problem!

Proof: the optimal solution in the original problem is a (not necessarily
optimal) solution for relaxed problem, therefore it must be at least as
expensive as the optimal solution in the relaxed problem.

● Comparison of IDS and A* (average total nodes expanded):

•3/10/2013

•14

27CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Building Heuristics: Pattern databases.

•By searching backwards from these goal states, we can compute the

distance of any configuration of these tiles to their goal locations. We

are ignoring the identity of the other tiles.

•For any state n, the number of moves required to get these tiles into

place form a lower bound on the cost of getting to the goal from n.

● Admissible heuristics can also be derived from solution to
subproblems: Each state is mapped into a partial specification,
e.g. in 15-puzzle only position of specific tiles matters.

● Here are goals for two sub-
problems (called Corner and
Fringe) of 15puzzle.

28CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Building Heuristics: Pattern databases.

● These configurations are stored in a database,
along with the number of moves required to move
the tiles into place.

● The maximum number of moves taken over all of
the databases can be used as a heuristic.

● On the 15-puzzle

■ The fringe data base yields about a 345 fold decrease in
the search tree size.

■ The corner data base yields about 437 fold decrease.

● Some times disjoint patterns can be found, then
the number of moves can be added rather than
taking the max.

•3/10/2013

•15

29CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Local Search

● So far, we keep the paths to the goal.
● For some problems (like 8-queens) we don’t care

about the path, we only care about the solution. Many
real problem like Scheduling, IC design, and network
optimizations are of this form.

● Local search algorithms operate using a single Current
state and generally move to neighbors of that state.

● There is an objective function that tells the value of
each state. The goal has the highest value (global
maximum).

● Algorithms like Hill Climbing try to move to a neighbor
with the highest value.

● Danger of being stuck in a local maximum. So some
randomness can be added to “shake” out of local
maxima.

30CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Local Search

● Simulated Annealing: Instead of the best move, take a
random move and if it improves the situation then
always accept, otherwise accept with a probability <1.
Progressively decrease the probability of accepting
such moves.

● Local Beam Search is like a parallel version of Hill
Climbing. Keeps K states and at each iteration chooses
the K best neighbors (so information is shared between
the parallel threads). Also stochastic version.

● Genetic Algorithms are similar to Stochastic Local Beam
Search, but mainly use crossover operation to generate
new nodes. This swaps feature values between 2
parent nodes to obtain children. This gives a
hierarchical flavor to the search: chunks of solutions
get combined. Choice of state representation becomes
very important. Has had wide impact, but not clear
if/when better than other approaches.

