CSE 3401: Intro to AI \& LP Informed Search

- Required Readings: Chapter 3, Sections 5 and 6, and Chapter 4, Section 1.

Heuristic Search.

- In uninformed search, we don't try to evaluate which of the nodes on the frontier are most promising. We never "look-ahead" to the goal.
- E.g., in uniform cost search we always expand the cheapest path. We don't consider the cost of getting to the goal.
- Often we have some other knowledge about the merit of nodes, e.g., going the wrong direction in Romania.

Heuristic Search.

- Merit of a frontier node: different notions of merit.
- If we are concerned about the cost of the solution, we might want a notion of merit of how costly it is to get to the goal from that search node.
- If we are concerned about minimizing computation in search we might want a notion of ease in finding the goal from that search node.
■We will focus on the "cost of solution" notion of merit.

Heuristic Search.

- The idea is to develop a domain specific heuristic function $h(n)$.
- $h(n)$ guesses the cost of getting to the goal from node n.
- There are different ways of guessing this cost in different domains. I.e., heuristics are domain specific.

Heuristic Search.

- Convention: If $\mathrm{h}\left(\mathrm{n}_{1}\right)<\mathrm{h}\left(\mathrm{n}_{2}\right)$ this means that we guess that it is cheaper to get to the goal from n_{1} than from n_{2}.
- We require that
$■ h(n)=0$ for every node n that satisfies the goal.
- Zero cost of getting to a goal node from a goal node.

Using only $h(n)$ Greedy best-first search.

- We use $h(n)$ to rank the nodes on open.
- Always expand node with lowest h-value.
- We are greedily trying to achieve a low cost solution.
- However, this method ignores the cost of getting to n, so it can be lead astray exploring nodes that cost a lot to get to but seem to be close to the goal:
\rightarrow cost $=10$
\rightarrow cost $=100$

A* search

- Take into account the cost of getting to the node as well as our estimate of the cost of getting to the goal from n.
- Define
- $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})$
- $g(n)$ is the cost of the path to node n
- $h(n)$ is the heuristic estimate of the cost of getting to a goal node from n.
- Now we always expand the node with lowest fvalue on the frontier.
- The f -value is an estimate of the cost of getting to the goal via this node (path).

Conditions on $\mathrm{h}(\mathrm{n})$

- We want to analyze the behavior of the resultant search.
- Completeness, time and space, optimality?
- To obtain such results we must put some further conditions on the heuristic function $h(n)$ and the search space.

Conditions on $\mathrm{h}(\mathrm{n})$: Admissible

- $c(n 1 \rightarrow n 2) \geq \epsilon>0$. The cost of any transition is greater than zero and can't be arbitrarily small.
- Let h *(n) be the cost of an optimal path from n to a goal node (∞ if there is no path). Then an admissible heuristic satisfies the condition
- $\mathrm{h}(\mathrm{n}) \leq \mathrm{h}^{*}(\mathrm{n})$
- i.e. h always underestimates of the true cost.
- Hence
- $\mathrm{h}(\mathrm{g})=0$
- For any goal node " g "

Consistency/monotonicity.

- Is a stronger condition than $h(n) \leq h *(n)$.
- A monotone/consistent heuristic satisfies the triangle inequality (for all nodes $\mathrm{n} 1, \mathrm{n} 2$):

$$
h(\mathrm{n} 1) \leq \mathrm{c}(\mathrm{n} 1 \rightarrow \mathrm{n} 2)+\mathrm{h}(\mathrm{n} 2)
$$

- Note that there might be more than one transition (action) between n 1 and n 2 , the inequality must hold for all of them.
- As we will see, monotonicity implies admissibility.

Intuition behind admissibility

-h(n) $\leq h *(n)$ means that the search won't miss any promising paths.

- If it really is cheap to get to a goal via n (i.e., both $g(n)$ and $h *(n)$ are low), then $f(n)$
$=g(n)+h(n)$ will also be low, and the search won't ignore n in favor of more expensive options.
- This can be formalized to show that admissibility implies optimality.

Intuition behind monotonicity

-h(n1) $\leq \mathrm{c}(\mathrm{n} 1 \rightarrow \mathrm{n} 2)+\mathrm{h}(\mathrm{n} 2)$
■ This says something similar, but in addition one won't be "locally" mislead. See next example.

Example: admissible but nonmonotonic

- The following h is not consistent since $h(n 2)>c(n 2 \rightarrow n 4)+h(n 4)$. But it is admissible.
$\{S\} \rightarrow\{n 1[200+50=250], \mathrm{n} 2[200+100=300]\}$
$\rightarrow\{\mathrm{n} 2[100+200=300], \mathrm{n} 3[400+50=450]\}$

$\rightarrow\{n 4[200+50=250], n 3[400+50=450]\}$
\rightarrow \{goal $[300+0=300]$, n3 $[400+50=450]\}$
We do find the optimal path as the heuristic is still admissible. But we are mislead into ignoring n 2 until after we expand n 1 .

Monotonicity implies admissibility

Proof: by induction on number of steps to a goal node M.

- Base case: If n is a goal node, then $h(n)=0=h *(n)$, so $h(n)$ $\leq h *(n)$.
- Induction step: Assume that $h(n k) \leq h *(n k)$ if number of steps to goal at nk is at most K. Show that the proposition must hold for nodes $\mathrm{nk}+1$ where number of steps to goal is $K+1$.
- Let $n k$ be the next node along a shortest path from nk+1 to goal
- $h(n k+1) \leq c(n k \rightarrow n k+1)+h(n k)$, since h is monotone
- $h(n k) \leq h *(n k)$, by induction hypothesis
- So $h(n k+1) \leq c(n k \rightarrow n k+1)+h *(n k)$
- Thus $h(n k+1) \leq h *(n k+1)$
- If goal is unreachable from a node n, then $h *(n)=\infty$ and result trivially holds.

Consequences of monotonicity

1. The f -values of nodes along a path must be non-decreasing.

- Let $<$ Start $\rightarrow \mathrm{n} 1 \rightarrow \mathrm{n} 2 \ldots \rightarrow \mathrm{nk}>$ be a path. We claim that

$$
f(n i) \leq f(n i+1)
$$

- Proof:

$$
\begin{aligned}
\mathrm{f}(\mathrm{ni}) & =\mathrm{c}(\text { Start } \rightarrow \ldots \rightarrow \mathrm{ni})+\mathrm{h}(\mathrm{ni}) \\
& \leq \mathrm{c}(\text { Start } \rightarrow \ldots \rightarrow \mathrm{ni})+\mathrm{c}(\mathrm{ni} \rightarrow \mathrm{ni}+1)+\mathrm{h}(\mathrm{ni}+1) \\
& =\mathrm{c}(\text { Start } \rightarrow \ldots \rightarrow \mathrm{ni} \rightarrow \mathrm{ni}+1)+\mathrm{h}(\mathrm{ni}+1) \\
& =\mathrm{g}(\mathrm{ni}+1)+\mathrm{h}(\mathrm{ni}+1) \\
& =\mathrm{f}(\mathrm{ni}+1) .
\end{aligned}
$$

Consequences of monotonicity

2. If $n 2$ is expanded after $n 1$, then $f(n 1) \leq f(n 2)$

Proof:

- If n 2 was on the frontier when n 1 was expanded,
- $\quad \mathrm{f}(\mathrm{n} 1) \leq \mathrm{f}(\mathrm{n} 2)$
otherwise we would have expanded $n 2$.
- If n 2 was added to the frontier after n 1 's expansion, then let n be an ancestor of n 2 that was present when n 1 was being expanded (this could be $n 1$ itself). We have $f(n 1) \leq f(n)$ since A^{*} chose $n 1$ while n was present in the frontier. Also, since n is along the path to $n 2$, by property (1) we have $f(n) \leq f(n 2)$. So, we have
- $\quad \mathrm{f}(\mathrm{n} 1) \leq \mathrm{f}(\mathrm{n} 2)$.

Consequences of monotonicity

3. When n is expanded every path with lower f-value has already been expanded.

- Assume by contradiction that there exists a path <Start, n0, nl, ni-1, ni, ni $+1, \ldots, n k>$ with $f(n k)<f(n)$ and ni is its last expanded node.
- Then $n i+1$ must be on the frontier while n is expanded:
a) by (1) $f(n i+1) \leq f(n k)$ since they lie along the same path.
b) since $\mathrm{f}(\mathrm{nk})<\mathrm{f}(\mathrm{n})$ so we have $f(n i+7)<f(n)$
c) by (2) $f(n) \leq f(n i+1)$ since n is expanded before $n i+1$.
* Contradiction from b\&c!

Consequences of monotonicity

4. With a monotone heuristic, the first time A* expands a state, it has found the minimum cost path to that state.

- Proof:
* Let PATH1 = <Start, n0, n1, ..., nk, n> be the first path to n found. We have $\mathrm{f}($ path 1$)=\mathrm{c}($ PATH1 $)+\mathrm{h}(\mathrm{n})$.
* Let PATH2 $=$ <Start, $\mathrm{m} 0, \mathrm{ml}, \ldots, \mathrm{mj}, \mathrm{n}>$ be another path to n found later. we have $f($ path 2$)=c($ PATH2 $)+h(n)$.
* By property (3), $\mathrm{f}($ path 1$) \leq \mathrm{f}($ path2)
* hence: $c($ PATH 1$) \leq c($ PATH2 $)$

Consequences of monotonicity

- Complete.
-

Yes, consider a least cost path to a goal node

- \quad SolutionPath $=\langle$ Start $\rightarrow \mathrm{nl} \rightarrow \ldots \rightarrow \mathrm{G}>$ with cost
- c(SolutionPath)
- \quad Since each action has a cost $\geq \epsilon>0$, there are only a finite number of nodes (paths) that have cost $\leq \mathrm{c}$ (SolutionPath).
- All of these paths must be explored before any path of cost > c(SolutionPath).
- So eventually SolutionPath, or some equal cost path to a goal must be expanded.
- Time and Space complexity.
- When $h(n)=0$, for all n
- $\quad h$ is monotone.
- A* becomes uniform-cost search!
- It can be shown that when $h(n)>0$ for some n, the number of nodes expanded can be no larger than uniform-cost.
- Hence the same bounds as uniform-cost apply. (These are worst case bounds).

Consequences of monotonicity

- Optimality
- Yes, by (4) the first path to a goal node must be optimal.
- Cycle Checking
- If we do cycle checking (e.g. using GraphSearch instead of TreeSearch) it is still optimal.
Because by property (4) we need keep only the first path to a node, rejecting all subsequent paths.

Search generated by monotonicity

Gradually adds " f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f=f_{i}$, where $f_{i}<f_{i+1}$

Admissibility without monotonicity

- When "h" is admissible but not monotonic.

- Time and Space complexity remain the same. Completeness holds.
- Optimality still holds (without cycle checking), but need a different argument: don't know that paths are explored in order of cost.
- Proof of optimality (without cycle checking):
- Assume the goal path $<\mathrm{S}, \ldots, \mathrm{G}>$ found by A^{*} has cost bigger than the optimal cost: i.e. $C^{*}<\mathrm{f}(\mathrm{G})$.
- There must exists a node n in the optimal path that is still in the frontier.
- We have: $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n})+\mathrm{h}^{*}(\mathrm{n})=\mathrm{C}^{*}<\mathrm{f}(\mathrm{G})$
- Therefore, $\mathrm{f}(\mathrm{n})$ must have been selected before G by A^{*}. contradiction!

Admissibility without monotonicity

- No longer guaranteed we have found an optimal path to a node the first time we visit it.
- So, cycle checking might not preserve optimality.
- To fix this: for previously visited nodes, must remember cost of previous path. If new path is cheaper must explore again.
- contours of monotonic heuristics don't hold.

Space problem with A* (like breath-first search):
IDA* is similar to Iterative Lengthening Search: It puts the newly expanded nodes in the front of frontier! Two new parameters:
-curBound (any node with a bigger f value is discarded) - smallestNotExplored (the smallest f value for discarded nodes in a round) when frontier becomes empty, the search starts a new round with this bound.

Building Heuristics: Relaxed Problem

- One useful technique is to consider an easier problem, and let $h(n)$ be the cost of reaching the goal in the easier problem.
- 8-Puzzle moves.
- Can move a tile from square A to B if
- A is adjacent (left, right, above, below) to B
- and B is blank
- Can relax some of these conditions

1. can move from A to B if A is adjacent to B (ignore whether or not position is blank)
2. can move from A to B if B is blank (ignore adjacency)
3. can move from A to B (ignore both conditions).

Building Heuristics: Relaxed Problem

- \#3 leads to the misplaced tiles heuristic.

■To solve the puzzle, we need to move each tile into its final position.
■ Number of moves $=$ number of misplaced tiles.

- Clearly $h(n)=$ number of misplaced tiles \leq the $h *(n)$ the cost of an optimal sequence of moves from n.
- \#1 leads to the manhattan distance heuristic.
$■$ To solve the puzzle we need to slide each tile into its final position.
■ We can move vertically or horizontally.
- Number of moves = sum over all of the tiles of the number of vertical and horizontal slides we need to move that tile into place.
■ Again $h(n)=$ sum of the manhattan distances $\leq h *(n)$ - in a real solution we need to move each tile at least that that far and we can only move one tile at a time.

Building Heuristics: Relaxed Problem

- The optimal cost to nodes in the relaxed problem is an admissible heuristic for the original problem!
Proof: the optimal solution in the original problem is a (not necessarily optimal) solution for relaxed problem, therefore it must be at least as expensive as the optimal solution in the relaxed problem.
- Comparison of IDS and A* (average total nodes expanded):

Depth	IDS	A*(Misplaced)	A*(Manhattan)
10	47,127	93	39
14	$3,473,941$	539	113
24	---	39,135	1,641

Let h1=Misplaced, h2=Manhattan

- Does h2 always expand less nodes than h1?
- Yes! Note that h 2 dominates h 1 , i.e. for all $\mathrm{n}: \mathrm{h} 1(\mathrm{n}) \leq \mathrm{h} 2(\mathrm{n})$. From this you can prove $h 2$ is faster than $h 1$.
- Therefore, among several admissible heuristic the one with highest value is the fastest.

Building Heuristics: Pattern databases.

- Admissible heuristics can also be derived from solution to subproblems: Each state is mapped into a partial specification, e.g. in 15 -puzzle only position of specific tiles matters.
- Here are goals for two subproblems (called Corner and Fringe) of 15 puzzle.

Fig. 2. The Fringe and Corner Target Patterns.
-By searching backwards from these goal states, we can compute the distance of any configuration of these tiles to their goal locations. We are ignoring the identity of the other tiles.
-For any state n, the number of moves required to get these tiles into place form a lower bound on the cost of getting to the goal from n.

Building Heuristics: Pattern databases.

- These configurations are stored in a database, along with the number of moves required to move the tiles into place.
- The maximum number of moves taken over all of the databases can be used as a heuristic.
- On the 15-puzzle
- The fringe data base yields about a 345 fold decrease in the search tree size.
- The corner data base yields about 437 fold decrease.
- Some times disjoint patterns can be found, then the number of moves can be added rather than taking the max.

Local Search

- So far, we keep the paths to the goal.
- For some problems (like 8-queens) we don't care about the path, we only care about the solution. Many real problem like Scheduling, IC design, and network optimizations are of this form.
- Local search algorithms operate using a single Current state and generally move to neighbors of that state.
- There is an objective function that tells the value of each state. The goal has the highest value (global maximum).
- Algorithms like Hill Climbing try to move to a neighbor with the highest value.
- Danger of being stuck in a local maximum. So some randomness can be added to "shake" out of local maxima.

Local Search

- Simulated Annealing: Instead of the best move, take a random move and if it improves the situation then always accept, otherwise accept with a probability <1. Progressively decrease the probability of accepting such moves.
- Local Beam Search is like a parallel version of Hill Climbing. Keeps K states and at each iteration chooses the K best neighbors (so information is shared between the parallel threads). Also stochastic version.
- Genetic Algorithms are similar to Stochastic Local Beam Search, but mainly use crossover operation to generate new nodes. This swaps feature values between 2 parent nodes to obtain children. This gives a hierarchical flavor to the search: chunks of solutions get combined. Choice of state representation becomes very important. Has had wide impact, but not clear if/when better than other approaches.

