Decision Table-Based Testing

Chapter 7

- What is a decision table?
 - A simple non-technical answer?
 - A detailed technical answer?

- A precise yet compact way to model complicated logic
- Associate conditions with actions to perform
- Can associate many independent conditions with several actions in an elegant way

Stub	Rule 1	Rule 2	Rules 3,4	Rule 5	Rule 6	Rules 7,8
c1	Т	Т	Т	F	F	F
c2	Т	Т	F	Т	Т	F
c3	Т	F	-	Т	F	-
a1	X	X		X		
a2	X				X	
a3		X		X		
a4			X			X

condition stubs	condition entries
action stubs	action entries

Decision Table Terminology – 2

- Condition entries restricted to binary values
 - We have a **limited entry table**
- Condition entries have more than two values
 - We have an **extended entry table**

condition stubs	condition entries
action stubs	action entries

Printer Troubleshooting DT

	Printer does not print	Y	Y	Y	Y	N	N	N	Ν
Conditions	A red light is flashing	Y	Y	Ν	Ν	Y	Y	Ν	Ν
Printer is unrecognized		Y	N	Y	Ν	Y	Ν	Y	Ν
	Check the power cable			X					
A at i a ma	Check the printer-computer cable	x		X					
Actions	Ensure printer software is installed	x		X		X		X	
	Check/replace ink	x	X			X	X		
	Check for paper jam		X		X				

A complete limited entry table

 How are condition entries in a decision table interpreted with respect to a program? Decision Table Interpretation – 2

- Conditions are interpreted as
 - Input
 - Equivalence classes of inputs

How are action entries in a decision table interpreted with respect to a program?

Decision Table Interpretation – 4

- Actions are interpreted as
 - Output
 - Major functional processing portions

What is the relationship between decision tables and test cases?

Decision Table Interpretation – 5

- With a complete decision table
 - Have a complete set of test cases

Triangle Decision Table

	1	2	3	4	5	6	/	8	9
C1: <a, b,c=""> forms a triangle?</a,>	F	Т	Т	Т	Т	Т	Т	Т	Т
C3: a = b?	-	Т	Т	Т	Т	F	F	F	F
C4: a = c?	-	Т	Т	F	F	Т	Т	F	F
C5: b = c?	_	Т	F	Т	F	Т	F	Т	F
A1: Not a Triangle	X								
A2: Scalene									Х
A3: Isosceles					Х		Х	Х	
A4: Equilateral		Х							
A5: Impossible			X	X		X			

Action added by a tester showing impossible rules

Triangle Decision Table – refined

	1	2	3	4	5	6	7	8	9	10	11
C1-1: a < b+c?	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	T
C1-2: b < a + c ?	_	F	Т	Т	Т	Т	Т	Т	Т	Т	T
C1-3: c < a+b?	_	_	F	Т	Т	Т	Т	Т	Т	Т	Т
C2: a = b?	-	_	_	Т	Т	Т	Т	F	F	F	F
C3: a = c?	_	_	_	Т	Т	F	F	Т	Т	F	F
C4: b = c?	_	_	_	Т	F	Т	F	Т	F	Т	F
A1: Not a Triangle	X	Х	X								
A2: Scalene											Х
A3: Isosceles							Х		Х	Χ	
A4: Equilateral				Х							
A5: Impossible					Х	Χ		Х			

Similar to equivalence classes we can refine the conditions

Triangle Test Cases

Case ID	а	b	С	Expected Output
1	4	1	2	Not a Triangle
2	1	4	2	Not a Triangle
3	1	2	4	Not a Triangle
4	5	5	5	Equilateral
5	???	???	???	Impossible
6	???	???	???	Impossible
7	2	2	3	Isosceles
8	???	???	???	Impossible
9	2	3	2	Isosceles
10	3	2	2	Isosceles
11	3	4	5	Scalene

Admission to University

- Students in
 - The range [80%, 100%] gpa are admitted and receive a scholarship.
 - The range [70%, 80%) gpa are admitted but have no scholarship.
 - The range [60%, 70%) gpa are admitted if they have no failures.
 - Otherwise they are not admitted.

- Limited entry tables with N conditions have 2^N rules.
- Don't care entries reduce the number of explicit rules by implying the existence of non-explicitly stated rules.
 - How many rules does a table contain including all the implied rules due to don't care entries?

- Each don't care entry in a rule doubles the count for the rule
- For each rule determine the corresponding rule count
- Total the rule counts

- How many rules do extended entry tables have?
- What is the rule count with don't care entries?
 - See DDT-27..28 (NextDate 2'nd try)
 - See DDT-30-31 (NextDate 3'rd try)

- Is it useful to count the rules in a decision table?
- Why?

Don't Care Entries and Rule Counts – 6

- Less rules than combination rule count
 - Indicates missing rules
- More rules than combination rule count
 - Could indicate redundant rules
 - See Table 7.9, page 107
 - Could indicate inconsistent table
 - See Table 7.10, page 108

- The NextDate problem illustrates the correspondence between equivalence classes and decision table structure
- The NextDate problem illustrates the problem of dependencies in the input domain
 - Decision tables can highlight such dependencies
 - Impossible dates can be clearly marked as a separate action

 $M1 = \{month : 1 .. 12 \mid days(month) = 30 \}$ $M2 = \{month : 1 .. 12 | days(month) = 31 \}$ $M3 = \{month : \{2\}\}$ As in discussion for $D1 = \{day : 1 ... 28\}$ equivalence classes $D2 = \{day : \{29\}\}$ $D3 = \{day : \{30\}\}$ $D4 = \{day : \{31\}\}$ $Y1 = \{year : 1812 ... 2012 | leap_year (year) \}$ $Y2 = \{year : 1812 ... 2012 | common_year (year) \}$

NextDate Decision Table – mutually exclusive conditions

C1: month in M1?	Т	_	_
C2: month in M2?	_	Т	
C3: month in M3?	_	—	Т
A1: Impossible			
A2: Next Date			

Because a month is in an equivalence class we cannot have T for more than one entry. The do not care entries are really F. NextDate DT (1st try - partial)

How many rules

- for a complete table?
- with don't care entries?

C1: month in M1?	Т	Т	Т	Т	Т	Т	Т	Т				
C2: month in M2?									Т	Т	Т	Т
C3: month in M3?												
C4: day in D1?	Т	Т							Т	Т		
C5: day in D2?			Т	Т							Т	Т
C6: day in D3?					Т	Т						
C7: day in D4?							Т	Т				
C8: year in Y1?	Т		Т		Т		Т		Т		Т	
C9: year in Y2?		Т		Т		Т		Т		Т		Т
A1: Impossible							Х	Х				
A2: Next Date	Х	X	Х	Х	Х	Х			Х	Х	Х	Х

DTT-26

NextDate DT (2nd try - part 1)

This table has 16 rules. How many rules for a complete table?

	1	2	3	4	5	6	7	8
C1: month in	M1	M1	M1	M1	M2	M2	M2	M2
C2: day in	D1	D2	D3	D4	D1	D2	D3	D4
C3: year in	_	—	—	_	—	—	—	—
A1: Impossible				X				
A2: Increment day	X	X			X	X	X	
A3: Reset day			X					Х
A4: Increment month			X					???
A5: reset month								???
A6: Increment year								???

Extended entry table – more refined actions

NextDate DT (2nd try - part 2)

	9	10	11	12	13	14	15	16
C1: month in	M3							
C2: day in	D1	D1	D1	D2	D2	D2	D3	D3
C3: year in	Y1	Y2	Y3	Y1	Y2	Y3	_	_
A1: Impossible				Х		Х	Х	X
A2: Increment day		X						
A3: Reset day	X		X		X			
A4: Increment month	X		X		X			
A5: reset month								
A6: Increment year								

A 22 rule table

	1	2	3	4	5	6	7	8	9	10
C1: month in	M1	M1	M1	M1	M1	M2	M2	M2	M2	M2
C2: day in	D1	D2	D3	D4	D5	D1	D2	D3	D4	D5
C3: year in	_	_	_	_	_	_		_	_	_
A1: Impossible					Х					
A2: Increment day	X	X	X			Х	Х	X	X	
A3: Reset day				X						Х
A4: Increment month				Х						Х
A5: reset month										
A6: Increment year										

	11	12	13	14	15	16	17	18	19	20	21	22
C1: month in	M3	M3	M3	M3	M3	M4						
C2: day in	D1	D2	D3	D4	D5	D1	D2	D2	D3	D3	D4	D5
C3: year in	_	_	_	_	I	I	Y1	Y2	Y1	Y2	I	-
A1: Impossible										Х	Х	Х
A2: Increment day	X	Х	X	X		Х	X					
A3: Reset day					X			X	Х			
A4: Increment month								X	Х			
A5: reset month					X							
A6: Increment year					X							

Decision Table - Equivalence Class Comparison

- It has been shown that equivalence classes and decision tables can be closely related.
 - What benefit do we get from using equivalence classes in place of decision tables?
 - What benefit do we get from using decision tables in place of equivalence classes?

- The specification is given or can be converted to a decision table .
- The order in which the predicates are evaluated does not affect the interpretation of the rules or resulting action.
- The order of rule evaluation has no effect on resulting action .
- Once a rule is satisfied and the action selected, no other rule need be examined.

- The order of executing actions in a satisfied rule is of no consequence.
- The restrictions do not eliminate many applications.
 - In most applications, the order in which the predicates are evaluated is immaterial.
 - Some specific ordering may be more efficient than some other but in general the ordering is not inherent in the program's logic.

- You have constructed a decision table
 - Before deriving test cases, what properties should the decision table have?

- Before deriving test cases, ensure that
 - The rules are complete
 - Every combination of predicate truth values is in the decision table
 - The rules are consistent
 - Every combination of predicate truth values results in only one action or set of actions

- Decision Table testing is most appropriate for programs where one or more of the conditions hold.
 - What are those conditions?

- Decision Table testing is most appropriate for programs where
 - There is a lot of decision making
 - There are important logical relationships among input variables
 - There are calculations involving subsets of input variables
 - There is complex computation logic (high cyclomatic complexity)
 - There are cause and effect relationships between input and output ???

• What are some problems with using decision tables?

- Decision tables do not scale up very well
 - May need to
 - Use extended entry decision tables
 - Algebraically simplify tables

- Decision tables need to be iteratively refined
 - The first attempt may be far from satisfactory
 - Similar to using equivalence classes

Guidelines and Observations – 5

- Look for redundant rules
 - More rules than combination count of conditions
 - Actions are the same
 - Too many test cases
 - See Table 7.9, page 107
- Look for inconsistent rules
 - More rules than combination count of conditions
 - Actions are different for the same conditions
 - See Table 7.10, page 108
- Look for Missing rules
 - Incomplete table