Functional Testing Review

Functional Testing

- We saw three types of functional testing
 - Boundary Value Testing
 - Equivalence Class Testing
 - Decision Table-Based Testing
- What is the common thread among the above methods?

Functional Testing – 2

- The common thread among these techniques
 - they all view a program as a mathematical function that maps its inputs to its outputs.

Functional Testing – 3

What do we look at when comparing functional testing methods?

Functional Testing – 4

- Look at
 - testing effort
 - testing efficiency
 - testing effectiveness

Boundary Value Test Cases

Test Case	a	b	С	Expected Output		
1	100	100	1	Isosceles		
2	100	100	2	Isosceles		
3	100	100	100	Equilateral		
4	100	100	199	Isosceles		
5	100	100	200	Not a Triangle		
6	100	1	100	Isosceles		
7	100	2	100	Isosceles		
8	100	100	100	Equilateral		
9	100	199	100	Isosceles		
10	100	200	100	Not a Triangle		
11	1	100	100	Isosceles		
12	2	100	100	Isosceles		
13	100	100	100	Equilateral		
14	199	100	100	Isosceles		
15	200	100	100	Not a Triangle		

Equivalence Class Test Cases

Test Case	а	b	С	Expected Output
WN1	5	5	5	Equilateral
WN2	2	2	3	Isosceles
WN3	3	4	5	Scalene
WN4	4	1	2	Not a Triangle
WR1	-1	5	5	a not in range
WR2	5	-1	5	b not in range
WR3	5	5	-1	c not in range
WR4	201	5	5	a not in range
WR5	5	201	5	b not in range
WR6	5	5	201	c not in range

Decision Table Test Cases

Case ID	a	b	С	Expected Output
DT1	4	1	2	Not a Triangle
DT2	1	4	2	Not a Triangle
DT3	1	2	4	Not a Triangle
DT4	5	5	5	Equilateral
DT5	???	???	???	Impossible
DT6	???	???	???	Impossible
DT7	2	2	3	Isosceles
DT8	???	???	???	Impossible
DT9	2	3	2	Isosceles
DT10	3	2	2	Isosceles
DT11	3	4	5	Scalene

Testing Effort Sophistication

- Describe the level of sophistication of the following test methods for how the methods are used to generate test cases?
 - Boundary value
 - Equivalence classes
 - Decision tables

Testing Effort Sophistication Boundary Value

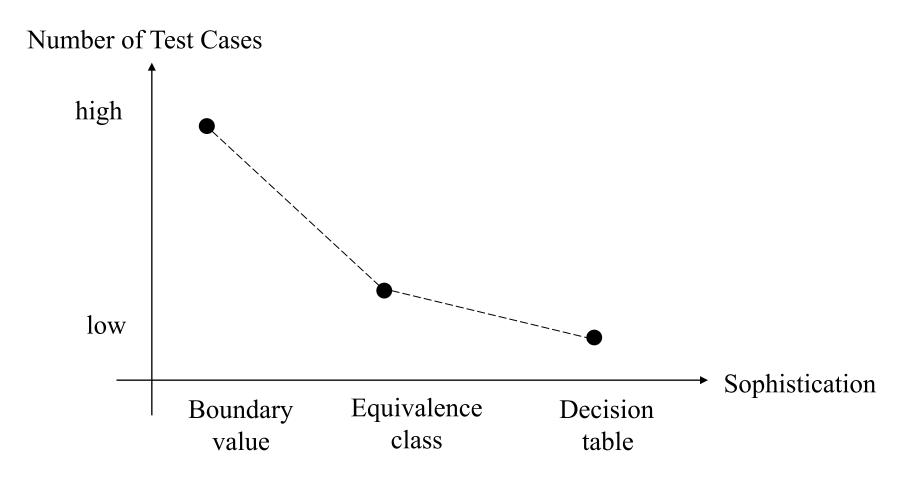
- Has no recognition of data or logical dependencies
 - Mechanical generation of test cases

Testing Effort Sophistication Equivalence Classes

- Takes into account data dependencies
 - More thought and care is required to define the equivalence classes
 - Mechanical generation after that

Testing Effort Sophistication Decision Tables

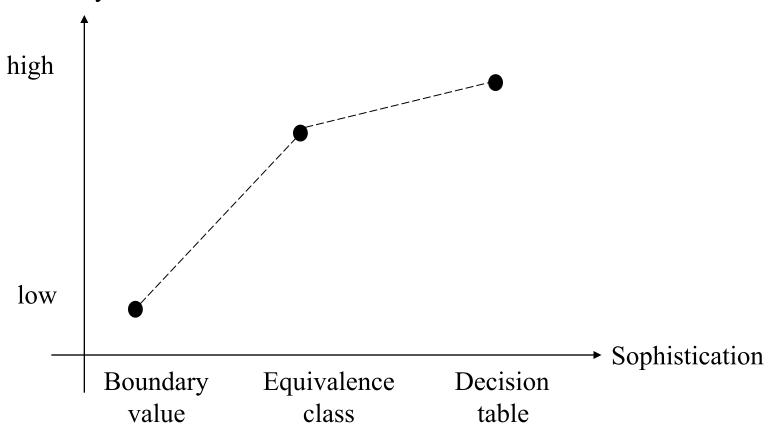
- The most sophisticated
 - It requires that we consider both data and logical dependencies.
 - Iterative process
 - Allows manual identification of redundant test cases
- Tradeoff between test identification effort and test execution effort



Trend Line Testing Effort

- What does the trend line look like for the following axes?
 - Number of test cases
 - Test method boundary, equivalence, decision


Trend Line Testing Effort – number of test cases


Trend Line Testing Effort – 2

- What does the trend line look like for the following axes?
 - Effort to identify test cases
 - Test method boundary, equivalence, decision

Trend Line Testing Effort – identifying test cases

Effort to Identify Test Cases

Testing Limitations

What are the fundamental limitation of functional testing?

Testing Limitations – 2

- Fundamental limitations of functional testing
 - Gaps of untested functionality
 - Redundant tests

Testing Efficiency

- What is the "Testing efficiency" question?
- What problem are we trying to solve?

- Testing efficiency question
 - How can we create a set of test cases that is "just right"?
 - Difficult to answer
 - Can only rely on the general knowledge that more sophisticated techniques, such as decision tables, are usually more efficient
- Structural testing methods will allow us to define more interesting metrics for efficiency

Testing Efficiency Example

- The worst case boundary analysis for the NextDate program generated 125 cases.
 - Redundancy
 - check January 1 for five different years
 - only a few February cases
 - Gaps
 - None on February 28, and February 29
 - No major testing for leap years

Testing Efficiency Example – 2

- The strong equivalence class test cases generated 36 test cases
 - 11 of which are impossible.
- The decision table technique generated 22 test cases
 - Fairly complete

Testing Effectiveness

How effective is a method or a set of test cases for finding faults present in a program?

Testing Effectiveness – 2

- Difficult to answer because
 - It presumes we know all faults in a program
 - It is impossible to prove that a program is free of faults (equivalent to solving the halting problem)
- What is the best we can do?

Testing Effectiveness – 3

- Given a fault type we can choose testing methods that are likely to reveal faults of that type
 - Track kinds and frequencies of faults in the software applications we develop
 - Use knowledge related to the most likely kinds of faults to occur

Guidelines

- What guidelines can you give for functional testing?
 - What attributes/properties do you consider?

- Kinds of faults may reveal some pointers as to which testing method to use.
- If we do not know the kinds of faults that are likely to occur in the program then the attributes most helpful in choosing functional testing methods are:
 - Whether the variables represent physical or logical quantities
 - Whether or not there are dependencies among variables
 - Whether single or multiple faults are assumed
 - Whether exception handling is prominent

Guidelines – 3

- If the variables refer to physical quantities and/or are independent, domain testing and equivalence testing can be considered.
- If the variables are dependent, decision table testing can be considered
- If the single-fault assumption is plausible to assume, boundary value analysis and robustness testing can be considered

Guidelines – 4

- If the multiple-fault assumption is plausible to assume, worst case testing, robust worst case testing, and decision table testing can be considered
- If the program contains significant exception handling, robustness testing and decision table testing can be considered
- If the variables refer to logical quantities, equivalence class testing and decision table testing can be considered

Functional Testing Decision Table

C1: Variables (P=Physical, L=Logical)?	Р	P	Р	Р	Р	L	L	L	L	L
C2: Independent Variables?		Y	Y	Y	N	Y	Y	Y	Y	N
C3: Single fault assumption?	Y	Y	N	N	_	Y	Y	N	N	-
C4: Exception handling?	Υ	N	Y	N	-	Y	N	Y	N	-
A1: Boundary value analysis		X								
A2: Robustness testing										
A3: Worst case testing				X						
A4: Robust worst case testing			X							
A5: Weak robust equivalence testing	X		X			X		X		
A6: Weak normal equivalence testing	X	X				X	X			
A7: Strong normal equivalence testing			X	X	X			X	X	X
A8: Decision table					X					X