
Path Testing and Test Coverage

Chapter 9

PT–2

Structural Testing

  Also known as glass/white/open box testing

  Structural testing is based on using specific knowledge of
the program source text to define test cases

  Contrast with functional testing where the program text is
not seen but only hypothesized

PT–3

Structural Testing

  Structural testing methods are amenable to

  Rigorous definitions

  Control flow, data flow, coverage criteria

  Mathematical analysis

  Graphs, path analysis

  Precise measurement

  Metrics, coverage analysis

PT–4

Program Graph Definition

  What is a program graph?

PT–5

Program Graph Definition – 2

  Given a program written in an imperative programming
language

  Its program graph is a directed graph in which nodes are
statements and statement fragments, and edges represent
flow of control

  Two nodes are connected if execution can proceed from one
to the other

PT–6

Triangle program text

1 output ("Enter 3 integers")
2 input (a, b, c)
3 output("Side a b c: ", a, b, c)
4 if (a < b) and (b < a+c) and (c < a+b)
5 then isTriangle ← true
6 else isTriangle ← false
7 fi
8 if isTriangle
9 then if (a = b) and (b = c)
10 else output ("equilateral")
11 else if (a ≠ b) and (a ≠ c) and (b ≠ c)
12 then output ("scalene")
13 else output("isosceles")
14 fi
15 fi
16 else output ("not a triangle")
17 fi

PT–7

Triangle Program Program Graph

DD-Path

  What is a DD-path?

PT–8

PT–9

DD-Path – informal definition

  A decision-to-decision path (DD-Path) is a path chain in
a program graph such that

  Initial and terminal nodes are distinct

  Every interior node has indeg =1 and outdeg = 1

  The initial node is 2-connected to every other node in
the path

  No instances of 1- or 3-connected nodes occur

Connectedness definition

  What is the definition of node connectedness?

  Hint: There are 4-types of connectedness

PT–10

PT–11

Connectedness definition – 2

  Two nodes J and K in a directed graph are

  0-connected iff no path exists between them

  1-connected iff a semi-path but no path exists between
them

PT–12

Connectedness definition – 2

  Two nodes J and K in a directed graph are

  2-connected iff a path exists between between them

  3-connected iff a path goes from J to K , and a path goes
from K to n1

PT–13

DD-Path – formal definition

  A decision-to-decision path (DD-Path) is a chain in a
program graph such that:

  Case 1: consists of a single node with indeg=0

  Case 2: consists of a single node with outdeg=0

  Case 3: consists of a single node with
 indeg ≥ 2 or outdeg ≥ 2

  Case 4: consists of a single node with
 indeg =1, and outdeg = 1

  Case 5: it is a maximal chain of length ≥ 1

  DD-Paths are also known as segments

PT–14

Triangle program DD-paths

Nodes Path Case

1 First 1

2,3 A 5

4 B 3

5 C 4

6 D 4

7 E 3

8 F 3

9 G 3

Nodes Path Case

10 H 4

11 I 3

12 J 4

13 K 4

14 L 3

15 M 3

16 N 4

17 Last 2

DD-path Graph

  What is a DD-path graph?

PT–15

PT–16

DD-Path Graph – informal definition

  Given a program written in an imperative language, its
DD-Path graph is a directed graph, in which

  Nodes are DD-Paths of its program graph

  Edges represent control flow between successor DD-Paths.

  Also known as Control Flow Graph

PT–17

Control Flow Graph Derivation

  Straightforward process

  Some judgment is required

  The last statement in a segment must be

  a predicate

  a loop control

  a break

  a method exit

PT–18

Triangle program DD-path graph

PT–19

displayLastMsg – Example Java program

public int displayLastMsg(int nToPrint) {!
 np = 0;!
 if ((msgCounter > 0) && (nToPrint > 0)) {!
 for (int j = lastMsg; ((j != 0) && (np < nToPrint)); --j) {!
 System.out.println(messageBuffer[j]);!
 ++np;!
 }!
 if (np < nToPrint) {!
 for (int j = SIZE; ((j != 0) && (np < nToPrint)); --j) {!
 System.out.println(messageBuffer[j]);!
 ++np;!
 }!
 }!
 }!
 return np;!
}!
!

PT–20

displayLastMsg– Segments part 1

1 public int displayLastMsg(int nToPrint) {!

2 np = 0;! A

3a if ((msgCounter > 0)! A

3b && (nToPrint > 0)) B

4a { for (int j = lastMsg;! C

4b ((j != 0) D

4c && (np < nToPrint)); E

4d --j)! F

5 { System.out.println(messageBuffer[j]);! F

6 ++np;! F

7 } F

Line Segment

PT–21

displayLastMsg– Segments part 2

Line Segment
8 if (np < nToPrint)! G

9a { for (int j = SIZE; ! H

9b ((j != 0) &&! I

9c (np < nToPrint));! J

9d --j)! K

10 { System.out.println(messageBuffer[j]);! K

11 ++np;! K

12 } L

13 } L

14 } L

15 return np; L

16 } L

PT–22

displayLastMsg – Control Flow Graph

PT–23

Control flow graphs definition – 1

  Depict which program segments may be followed by
others

  A segment is a node in the CFG

  A conditional transfer of control is a branch represented
by an edge

  An entry node (no inbound edges) represents the entry
point to a method

  An exit node (no outbound edges) represents an exit
point of a method

PT–24

Control flow graphs definition – 2

  An entry-exit path is a path from the entry node to the
exit node

  Path expressions represent paths as sequences of
nodes

  Loops are represented as segments within parentheses
followed by an asterisk

  There are 22 different entry-exit path expressions in
displayLastMsg

PT–25

Entry-exit path expressions – part 1

1 A L

2 A B L

3 A B C D G L

4 A B C D E G L

5 A B C (D E F)* D G L

6 A B C (D E F)* D E G L

7 A B C D G H I L

8 A B C D G H I J L

9 A B C D G H (I J K)* I L

10 A B C (D E F)* D E G H (I J K)* I J L

11 A B C D E G H I L

Entry-Exit paths

PT–26

Entry-exit path expressions – part 2

Entry-Exit paths

12 A B C D E G H I J L

13 A B C D E G H (I J K)* I L

14 A B C D E G H (I J K)* I J L

15 A B C (D E F)* D G H I L

16 A B C (D E F)* D G H I J L

17 A B C (D E F)* D G H (I J K)* I L

18 A B C (D E F)* D G H (I J K)* I J L

19 A B C (D E F)* D E G H I L

20 A B C (D E F)* D E G H I J L

21 A B C (D E F)* D E G H (I J K)* I L

22 A B C (D E F)* D E G H (I J K)* I J L

PT–27

Paths displayLastMsg – decision table – part 1

Entry/Exit Path A B D E G I J

1 A L F – – – – – –

2 A B L T F – – – – –

3 A B C D G L T T F – F – –

4 A B C D E G L T T T F – – –

5 A B C (D E F)* D G L T T T/F T/– F – –

6 A B C (D E F)* D E G L T T T/T T/F F – –

7 A B C D G H I L T T F – T F –

8 A B C D G H I J L T T F – T T F

9 A B C D G H (I J K)* I L T T F – T/F T/– T

10 A B C D G H (I J K)* I J L T T F – T/T T/F T

11 A B C D E G H I L T T T F T F –

Path condition by Segment Name

x/x Conditions at loop-entry / loop-exit – is don’t care

PT–28

Paths displayLastMsg – decision table – part 2

Entry/Exit Path A B D E G I J

12 A B C D E G H I J L T T T F T T F

13 A B C D E G H (I J K)* I L T T T F T T/F T/–

14 A B C D E G H (I J K)* I J L T T T F T T/T T/F

15 A B C (D E F)* D G H I L T T T/F T/– T F –

16 A B C (D E F)* D G H I J L T T T/T T/F T T F

17 A B C (D E F)* D G H (I J K)* I L T T T/F T/– T T/F T/–

18 A B C (D E F)* D G H (I J K)* I J L T T T/F T/– T T/T T/F

19 A B C (D E F)* D E G H I L T T T/T T/F T F –

20 A B C (D E F)* D E G H I J L T T T/T T/F T T F

21 A B C (D E F)* D E G H (I J K)* I L T T T/T T/F T T T

22 A B C (D E F)* D E G H (I J K)* I J L T T T/T T/F T T T

Path condition by Segment Name

x/x Conditions at loop-entry / loop-exit – is don’t care

PT–29

Program text coverage Metrics

  List the program text coverage metrics.

PT–30

Program text coverage Metrics – 2

  C0 Every Statement

  C1 Every DD-path

  C1p Every predicate to each outcome

  C2 C1 coverage + loop coverage

  Cd C1 coverage + every dependent pair of DD-paths

  CMCC Multiple condition coverage

  Cik Every program path that contains k loop repetitions

  Cstat Statistically significant fraction of the paths

  C∞ Every executable path

PT–31

Program text coverage models

  What are the common program text coverage
models?

PT–32

Program text coverage models – 2

  Statement Coverage

  Segment Coverage

  Branch Coverage

  Multiple-Condition Coverage

PT–33

Statement coverage – C0

  When is statement coverage achieved?

PT–34

Statement coverage – C0 – 2

  Achieved when all statements in a method have been
executed at least once

  A test case that will follow the path expression below will
achieve statement coverage in our example

  One test case is enough to achieve statement coverage!

A B C (D E F)* D G H (I J K)* I L

PT–35

Segment coverage

  When is segment coverage achieved?

PT–36

Segment coverage – 2

  Achieved when all segments have been executed at least
once

  Segment coverage counts segments rather than statements

  May produce drastically different numbers
  Assume two segments P and Q
  P has one statement, Q has nine
  Exercising only one of the segments will give either 10%

or 90% statement coverage
  Segment coverage will be 50% in both cases

PT–37

Statement coverage problems

  What problems are there with statement coverage?

PT–38

Statement coverage problems – 2

  Important cases may be missed

  Predicate may be tested for only one value

  misses many bugs

  Loop bodies may only be iterated only once

  What coverage solves this problem?

  Define it

String s = null;
if (x != y) s = “Hi”;
String s2 = s.substring(1);

PT–39

Branch coverage – C1p

  Achieved when every edge from a node is executed at
least once

  At least one true and one false evaluation for each
predicate

  How many test cases are required?

PT–40

Branch coverage – C1p – 2

  Can be achieved with D+1 paths in a control flow graph
with D 2-way branching nodes and no loops

  Even less if there are loops

  In the Java example displayLastMsg branch coverage is
achieved with three paths – see next few slides

X L
X C (Y F)* Y G L
X C (Y F)* Y G H (Z K)* Z L

PT–41

Java example program displayLastMsg – DD-path graph

X, Y & Z are shorthand for the nodes
within the dotted boxes; used for branch testing

PT–42

Java example program displastLastMsg
– aggregate predicate DD-path graph

PT–43

Aggregate Paths – decision table – part 1

Branch Coverage A B D E G I J

1 X L F – – – – – –

2 X L T F – – – – –

3 X C Y G L T T F – F – –

4 X C Y G L T T T F – – –

5 X C (Y F)* Y G L T T T/F T/– F – –

6 X C (Y F)* Y G L T T T/T T/F F – –

7 X C Y G H Z L T T F – T F –

8 X C Y G H Z L T T F – T T F

9 X C Y G H (Z K)* I L T T F – T/F T/– T

10 X C Y G H (Z K)* I L T T F – T/T T/F T

11 X C Y G H Z L T T T F T F –

Path condition by Segment Name

x/x Conditions at loop-entry / loop-exit – is don’t care

PT–44

Aggregate Paths – decision table example – part 2

Branch Coverage A B D E G I J

12 X C Y G H Z L T T T F T T F

13 X C Y G H (Z K)* Z L T T T F T T/F T/–

14 X C Y G H (Z K)* Z L T T T F T T/T T/F

15 X C (Y F)* Y G H Z L T T T/F T/– T F –

16 X C (Y F)*Y G H Z L T T T/T T/F T T F

17 X C (Y F)* Y G H (Z K)* Z L T T T/F T/– T T/F T/–

18 X C (Y F)* Y G H (Z K)* Z L T T T/F T/– T T/T T/F

19 X C (Y F)* Y G H Z L T T T/T T/F T F –

20 X C (Y F)* Y G H Z L T T T/T T/F T T F

21 X C (Y F)* Y G H (Z K)* Z L T T T/T T/F T T T

22 X C (Y F)* Y G H (Z K)* Z L T T T/T T/F T T T

Path condition by Segment Name

x/x Conditions at loop-entry / loop-exit – is don’t care

PT–45

Branch coverage problems

  What are the problems with branch coverage?

PT–46

Branch coverage problems – 2

  Ignores implicit paths from compound paths

  11 paths in aggregate model vs 22 in full model

PT–47

Branch coverage problems – 3

  Ignores implicit paths from compound paths

  11 paths in aggregate model vs 22 in full model

  Short-circuit evaluation means that many
predicates might not be evaluated

  A compound predicate is treated as a single
statement. If n clauses, 2n combinations, but only 2
are tested

PT–48

Branch coverage problems – 4

  Ignores implicit paths from compound paths

  11 paths in aggregate model vs 22 in full model

  Short-circuit evaluation means that many predicates might not be
evaluated

  A compound predicate is treated as a single statement. If n
clauses, 2n combinations, but only 2 are tested

  Only a subset of all entry-exit paths is tested

  Two tests for branch coverage vs 4 tests for path
coverage

  a = b = x = y = 0 and a = x = 0 ∧ b = y = 1

if (a == b) x++;
if (x == y) x--;

PT–49

Overcoming branch coverage problems

  How do we overcome branch coverage problems?

PT–50

Overcoming branch coverage problems – 2

  Use Multiple condition coverage

  All true-false combinations of simple conditions in
compound predicates are considered at least once

  Guarantees statement, branch and predicate coverage

  Does not guarantee path coverage

  A truth table may be necessary

  Not necessarily achievable

  lazy evaluation – true-true and true-false are impossible

  mutually exclusive conditions – false-false branch is
impossible

if ((x > 0) || (x < 5)) …

PT–51

Overcoming branch coverage problems – 3

  Can have infeasible paths due to dependencies and
redundant predicates

  Paths perpetual .. motion and free .. lunch are impossible

  In this case indicates a potential bug

  At least poor program text

if x = 0 then oof.perpetual
 else off.free
fi

if x != 0 then oof.motion
 else off.lunch
fi

PT–52

Dealing with Loops

  Loops are highly fault-prone, so they need to be tested
carefully

  Based on the previous slides on testing decisions
what would be a simple view of testing a loop?

PT–53

Dealing with Loops – 2

  Simple view

  Involves a decision to traverse the loop or not

  Test as a two way branch

  What would functional testing suggest as a better
way of testing?

  What tests does it suggest?

PT–54

Dealing with Loops – 3

  A bit better

  Boundary value analysis on the index variable

  Suggests a zero, one, many tests

  How do we deal with nested loops?

PT–55

Dealing with Loops – 3

  Nested loops

  Tested separately starting with the innermost

  Once loops have been tested what can we do with
the control flow graph?

PT–56

Dealing with Loops – 4

  Once loops have been tested

  They can be condensed to a single node

PT–57

Condensation graphs

  Condensation graphs are based on removing strong
components or DD-paths

  For programs remove structured program constructs

  One entry, one exit constructs for sequences, choices and
loops

  Each structured component once tested can be replaced by
a single node when condensing its graph

PT–58

Violations of proper structure

  Program text that violates proper structure cannot be
condensed

  Branches either into or out of the middle of a loop

  Branches either into or out of then and else phrases of if…
then…else statements

  Increases the complexity of the program

  Increases the difficulty of testing the program

PT–59

Cyclomatic number

  The cyclomatic number for a graph is given by

  CN(G) = e – v + 2*c

  e number of edges
v number of vertices
c number of connected regions

  For strongly connected graphs, need to add edges
from every sink to every source

PT–60

Cyclomatic number for programs

  For properly structured programs there is only one
component with one entry and one exit. There is no edge
from exit to entry.

  Definition 1: CN(G) = e – v + 2

  Only 1 component, not strongly connected

  Definition 2: CN(G) = p + 1

  p is the number of predicate nodes with out degree = 2

  Definition 3: CN(G) = r + 1

  r is the number of enclosed regions

