

Path Testing – Creating Test Cases

Chapter 9

CFG question

What is the control flow graphDD-path graph for the following?

Creating a test case – key question

What is the key question that needs to be answered to be able to create a test for a path?

Create a test case – key question – 2

- The key question is:
 - How to make the path execute, if possible.
 - Generate input data that satisfies all the conditions on the path.

Create a test case – key items

• What are the key items you need to generate a test case for a path?

Create a test case – key items – 2

- Key items needed to generate a test case
 - Input vector
 - Predicate
 - Path predicate
 - Predicate interpretation
 - Path predicate expression
 - Create test input from path predicate expression

Input Vector

What is an input vector?

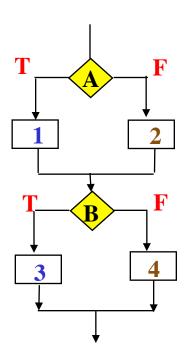
Input Vector – 2

 An input vector is a collection of all data entities read by the routine whose values must be fixed prior to entering the routine.

Input Vector – 3

What are the members of an input vector?

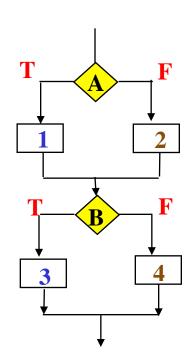
- Members of an input vector can be as follows.
 - Input arguments to the routine
 - Global variables and constants
 - Files
 - Contents of registers (in Assembly language programming)
 - Network connections
 - Timers



What is a predicate?

Predicate – 2

- A predicate is a logical function evaluated at a decision point.
 - Example
 - In the following each of a < b and c < d are predicates</p>


Path predicate

What is a path predicate?

Path predicate – 2

- A path predicate is the set of predicates associated with a path.
 - Example
 - In the following a < b = true & c < d = false is a path predicate</p>

Predicate Interpretation

- A path predicate may contain local variables.
- Local variables play no role in selecting inputs that force a path to execute.
- Local variables can be eliminated with symbolic execution.
 - Symbolically substituting operations along a path in order to express the predicate solely in terms of the input vector and a constant vector.
- A predicate may have different interpretations depending on how control reaches the predicate.

Path Predicate Expression

- An interpreted path predicate is called a path predicate expression.
- A path predicate expression has the following attributes.
 - It has no local variables.
 - It is a set of constraints in terms of the input vector, and, maybe, constants.
 - Path forcing inputs can be generated by solving the constraints.
 - If a path predicate expression has no solution, the path is infeasible.

Path Predicate Generating Input Values

- Path predicate: a < b = true & c < d = false</p>
- Substitute for c and d:

$$a < b = true & a + b < a * b = false$$

 $\rightarrow a < b & a + b \ge a * b$

- Solve for a and b: a = 0 & b = 1
 Solutions are not unique
- We have a feasible path, since a solution exists.
- Can have infeasible paths, if there is no solution to the constraints

Can have decision table

	A1B3	A1B4	A2B3	A2B4
A < B	Т	Т	F	F
C < D	Т	F	Т	F
A value	2	0	1	5
B value	5	1	0	2

Paths **A1B3** and **A2B4** give statement coverage Or paths **A1B4** and **A2B3** give statement coverage

- A program unit may contain a large number of paths.
 - Path selection becomes a problem. Some selected paths may be infeasible.
 - Apply a path selection strategy:
 - Select as many short paths as possible.
 - Choose longer paths.
 - Make an effort to write program text with fewer or no infeasible paths.