## Path Testing - Creating Test Cases

Chapter 9

## CFG question

- What is the control flow graph
- DD-path graph for the following?

$$
\begin{gathered}
\text { if } a<b \text { then } c=a+b ; d=a * b \\
\text { else } c=a * b ; d=a+b \\
\text { if } c<d \text { then } x=a+c ; y=b+d \\
\text { else } x=a * c ; y=b * d
\end{gathered}
$$

## Creating a test case - key question

- What is the key question that needs to be answered to be able to create a test for a path?


## Create a test case - key question - 2

- The key question is:
- How to make the path execute, if possible.
- Generate input data that satisfies all the conditions on the path.

Create a test case - key items

- What are the key items you need to generate a test case for a path?


## Create a test case - key items - 2

- Key items needed to generate a test case
- Input vector
- Predicate
- Path predicate
- Predicate interpretation
- Path predicate expression
- Create test input from path predicate expression


## Input Vector

- What is an input vector?


## Input Vector - 2

- An input vector is a collection of all data entities read by the routine whose values must be fixed prior to entering the routine.
- What are the members of an input vector?


## Input Vector - 4

- Members of an input vector can be as follows.
- Input arguments to the routine
- Global variables and constants
- Files
- Contents of registers (in Assembly language programming)
- Network connections
- Timers


## Predicate

- What is a predicate?


## Predicate - 2

- A predicate is a logical function evaluated at a decision point.
- Example
- In the following each of $\mathbf{a}<\mathbf{b}$ and $\mathbf{c}<\mathbf{d}$ are predicates

$$
\begin{gathered}
\text { if } a<b \text { then } c=a+b ; d=a * b \\
\text { else } c=a * b ; d=a+b \\
\text { if } c<d \text { then } x=a+c ; y=b+d \\
\text { else } x=a * c ; y=b * d
\end{gathered}
$$



## Path predicate

- What is a path predicate?


## Path predicate - 2

- A path predicate is the set of predicates associated with a path.
- Example
- In the following $\mathbf{a}<\mathbf{b}=$ true $\& \mathbf{c}<\mathbf{d}=$ false is a path predicate

$$
\begin{gathered}
\text { if } a<b \text { then } c=a+b ; d=a * b \\
\text { else } c=a * b ; d=a+b \\
\text { if } c<d \text { then } x=a+c ; y=b+d \\
\text { else } x=a * c ; y=b * d
\end{gathered}
$$



## Predicate Interpretation

- A path predicate may contain local variables.
- Local variables play no role in selecting inputs that force a path to execute.
- Local variables can be eliminated with symbolic execution.
- Symbolically substituting operations along a path in order to express the predicate solely in terms of the input vector and a constant vector.
- A predicate may have different interpretations depending on how control reaches the predicate.


## Path Predicate Expression

- An interpreted path predicate is called a path predicate expression.
- A path predicate expression has the following attributes.
- It has no local variables.
- It is a set of constraints in terms of the input vector, and, maybe, constants.
- Path forcing inputs can be generated by solving the constraints.
- If a path predicate expression has no solution, the path is infeasible.


## Path Predicate Generating Input Values

$$
\begin{gathered}
\text { if } a<b \text { then } c=a+b ; d=a * b \\
\text { else } c=a * b ; d=a+b \\
\text { if } c<d \text { then } x=a+c ; y=b+d \\
\text { else } x=a * c ; y=b * d
\end{gathered}
$$

- Path predicate: $\mathbf{a}<\mathbf{b}=$ true $\& \mathbf{c}<\mathbf{d}=$ false
- Substitute for c and d :
$\mathrm{a}<\mathrm{b}=$ true $\& \mathrm{a}+\mathrm{b}<\mathbf{a} * \mathbf{b}=$ false
$\rightarrow a<b \& a+b \geq a * b$
- Solve for a and $\mathrm{b}: ~ \mathrm{a}=0 \quad$ \& $\mathrm{b}=1$ Solutions are not unique
- We have a feasible path, since a solution exists.
- Can have infeasible paths, if there is no solution to the constraints


## Can have decision table

|  | A1B3 | A1B4 | A2B3 | A2B4 |
| :--- | :---: | :---: | :---: | :---: |
| $\mathbf{A}<\mathbf{B}$ | T | T | F | F |
| $\mathbf{C}<\mathbf{D}$ | T | F | T | F |
| A value | 2 | 0 | 1 | 5 |
| B value | 5 | $\mathbf{1}$ | $\mathbf{0}$ | 2 |

Paths A1B3 and A2B4 give statement coverage
Or paths A1B4 and A2B3 give statement coverage

## Selecting paths

- A program unit may contain a large number of paths.
- Path selection becomes a problem. Some selected paths may be infeasible.
- Apply a path selection strategy:
- Select as many short paths as possible.
- Choose longer paths.
- Make an effort to write program text with fewer or no infeasible paths.

