
Dataflow Testing

Chapter 10!

DFT–2

Dataflow Testing

  Testing All-Nodes and All-Edges in a control flow graph
may miss significant test cases!

  Testing All-Paths in a control flow graph is often too time-
consuming!

  Can we select a subset of these paths that will reveal the
most faults?!

  Dataflow Testing focuses on the points at which variables
receive values and the points at which these values are
used!

DFT–3

Concordances

  Data flow analysis is in part based concordance analysis
such as that shown below – the result is a variable cross-
reference table!

 18 beta ← 2!
 25 alpha ← 3 × gamma + 1!
 51 gamma ← gamma + alpha - beta!
123 beta ← beta + 2 × alpha!
124 beta ← gamma + beta + 1!

! ! Defined ! Used!
alpha ! 25 ! ! 51, 123!
beta ! 18, 123, 124 ! 51, 123, 124!
gamma 51 ! 25, 51, 124!

DFT–4

Dataflow Analysis

  Can reveal interesting bugs!
  A variable that is defined but never used!
  A variable that is used but never defined!
  A variable that is defined twice before it is used!
  Sending a modifier message to an object more than

once between accesses!
  Deallocating a variable before it used!

  Container problem – deallocating container loses
references to items in the container, memory leak!

DFT–5

Dataflow Analysis – 2

  The bugs can be found from a cross-reference table using
static analysis!

  Paths from the definition of a variable to its use are more
likely to contain bugs!

DFT–6

Definitions

  A node n in the program graph is a defining node for
variable v – DEF(v, n) – if the value of v is defined at the
statement fragment in that node!
  Input, assignment, procedure calls 
!

  A node in the program graph is a usage node for variable
v – USE(v, n) – if the value of v is used at the statement
fragment in that node!
  Output, assignment, conditionals!

DFT–7

Definitions – 2

  In languages without garbage collection!
  A node in the program is a kill node for a variable v –

KILL(v, n) – if the variable is deallocated at the
statement fragment in that node.!

  A usage node is a predicate use, P-use, if variable v
appears in a predicate expression!
  Always in nodes with outdegree ≥ 2!

  A usage node is a computation use, C-use, if variable v
appears in a computation!
  Always in nodes with outdegree ≤ 1!

DFT–8

Definitions – 3

  A definition-use path, du-path, with respect to a variable
v is a path whose first node is a defining node for v, and
its last node is a usage node for v 
!

  A du-path with no other defining node for v is a definition-
clear path, dc-path!

DFT–9

1 int max = 0;!
2 int j = s.nextInt();!
3 while (j > 0)!
4 if (j > max) {!
5 max = j;!
6 }!
7 j = s.nextInt();!
8 }!
9 System.out.println(max);!

Example 1 – Max program

A definition of j

A C-use of j

P-uses of j & max

A definition of j

Definitions
of max

A C-use of max

DFT–10

Example 2 – Billing program

calculateBill (usage : INTEGER) : INTEGER
double bill = 0;

if usage > 0 then bill = 40 fi

if usage > 100
then if usage ≤ 200

 then bill = bill + (usage – 100) *0.5
 else bill = bill + 50 + (usage – 200) * 0.1

 if bill ≥ 100 then bill = bill * 0.9 fi

 fi
fi
return bill
end Kill node for bill

DFT–11

Max program – analysis

Legend!
A..F Segment name!
d defining node for j!
u use node for j!

int max = 0;!
int j = s.nextInt();

while (j > 0)!

System.out.println(max);!

max = j;!

if (j > max)!

j = s.nextInt();!

A

B

C

D

E

F

d

d

u

u

u

dc-paths j!
A B!
A B C!
A B C D!
E B!
E B C!
E B C D!
!
dc-paths max!
A B F!
A B C!
D E B C!
D E B F!

DFT–12

Dataflow Coverage Metrics

  Based on these definitions we can define a set of
coverage metrics for a set of test cases!

  We have already seen!
  All-Nodes!
  All-Edges!
  All-Paths!

  Data flow has additional test metrics for a set T of paths in
a program graph!
  All assume that all paths in T are feasible!

All-Defs Criterion

DFT–13

  The set T satisfies the All-Def criterion!
  For every variable v, T contains a dc-path from every

defining node for v to at least one usage node for v!
  Not all use nodes need to be reached!

!v "V (P),nd " prog_ graph(P) | DEF(v, nd)
•#nu " prog_ graph(P) |USE(v,nu)• dc _ path(nd, nu)" T

DFT–14

All-Uses Criterion

  The set T satisfies the All-Uses criterion iff !
  For every variable v, T contains dc-paths that start at

every defining node for v, and terminate at every usage
node for v!

  Not DEF(v, n) × USE(v, n) – not possible to have a
dc-path from every defining node to every usage
node!

!
(!v " V (P), nu " prog _graph(P) |USE(v,nu)
•#nd " prog _graph(P) |DEF(v,nd)• dc _ path(nd,nu) " T)
$

all _ defs _ criterion

DFT–15

All-P-uses / Some-C-uses

  The set T satisfies the All-P-uses/Some-C-uses criterion iff!
  For every variable v in the program P, T contains a dc-

path from every defining node of v to every P-use node
for v!

  If a definition of v has no P-uses, a dc-path leads to
at least one C-use node for v!

(!v " V (P), nu " prog _graph(P) |P _use(v,nu)
•#nd " prog _graph(P) |DEF(v,nd)• dc _ path(nd,nu) " T)
$

all _ defs _ criterion

DFT–16

All-C-uses / Some-P-uses

  The test set T satisfies the All-C-uses/Some-P-uses
criterion iff!
  For every variable v in the program P, T contains a dc-

path from every defining node of v to every C-use of v!
  If a definition of v has no C-uses, a dc-path leads to

at least one P-use!

(!v " V (P), nu " prog _graph(P) |C _ use(v, nu)
•#nd " prog _graph(P) |DEF(v,nd)• dc _ path(nd,nu) " T)
$

all _ defs _ criterion

DFT–17

Miles-per-gallon Program

miles_per_gallon (miles, gallons, price : INTEGER)

if gallons = 0 then

 // Watch for division by zero!!

 Print(“You have “ + gallons + “gallons of gas”)

else if miles/gallons > 25

 then print(“Excellent car. Your mpg is “
 + miles/gallon)

 else print(“You must be going broke. Your mpg is “
 + miles/gallon + “ cost “ + gallons * price)

fi
end

DFT–18

Example du-paths

  For each variable in the miles_per_gallon program see the
test paths for the following dataflow path sets!
  All-Defs (AD)!
  All-C-uses (ACU)!
  All-P-uses (APU)!
  All-C-uses/Some-P-uses (ACU+P)!
  All-P-uses/Some-C-uses (APU+C)!
  All-uses!

DFT–19

Mile-per-gallon Program – Segmented

gasguzzler (miles, gallons, price : INTEGER) A

if gallons = 0 then B

 // Watch for division by zero!! C

 Print(“You have “ + gallons + “gallons of gas”)

else if miles/gallons > 25 D

 then print(“Excellent car. Your mpg is “ E
 + miles/gallon)

 else print(“You must be going broke. Your mpg is “ F
 + miles/gallon + “ cost “ + gallons * price)

fi G
end

DFT–20

MPG program graph

Def miles,
gallons

P-use
gallons

P-use
 miles,
gallons

C-use gallons

C-use miles, gallons, price

C-use miles, gallons

Possible
C-use miles, gallons
But not common
practice

DFT–21

MPG – DU-Paths for Miles

  All-Defs!
  Each definition of each variable for at least one use of

the definition!
  A B D!

  All-C-uses!
  At least one path of each variable to each c-use of the

definition!
  A B D E !A B D F !A B D!

  All-P-uses!
  At least one path of each variable definition to each p-

use of the definition!
  A B D!

DFT–22

MPG – DU-Paths for Miles – 2

  All-C-uses/Some-P-uses!
  At least one path of each variable definition to each c-

use of the variable. If any variable definitions are not
covered use p-use!

  A B D E !A B D F !A B D!

  All-P-uses/Some-C-uses!
  At least one path of each variable definition to each p-

use of the variable. If any variable definitions are not
covered use c-use!

  A B D!

  All-uses!
  At least one path of each variable definition to each p-

use and each c-use of the definition!
  A B D !A B D E !A B D F!

DFT–23

MPG – DU-Paths for Gallons

  All-Defs!
  Each definition of each variable for at least one use of

the definition!
  A B!

  All-C-uses!
  At least one path of each variable to each c-use of the

definition!
  A B C A B D E A B D F A B D!

  All-P-uses!
  At least one path of each variable definition to each p-

use of the definition!
  A B ! !A B D!

DFT–24

MPG – DU-Paths for Gallons – 2

  All-C-uses/Some-P-uses!
  At least one path of each variable definition to each c-

use of the variable. If any variable definitions are not
covered use p-use!

  A B C A B D E A B D F A B D!

  All-P-uses/Some-C-uses!
  At least one path of each variable definition to each p-

use of the variable. If any variable definitions are not
covered use c-use!

  A B ! !A B D!

  All-uses!
  At least one path of each variable definition to each p-

use and each c-use of the definition!
  A B A B C A B D A B D E A B D F!

DFT–25

MPG – DU-Paths for Price

  All-Defs!
  Each definition of each variable for at least one use of

the definition!
  A B D F!

  All-C-uses!
  At least one path of each variable to each c-use of the

definition!
  A B D F!

  All-P-uses!
  At least one path of each variable definition to each p-

use of the definition!
  none!

DFT–26

MPG – DU-Paths for Price – 2

  All-C-uses/Some-P-uses!
  At least one path of each variable definition to each c-

use of the variable. If any variable definitions are not
covered use p-use!

  A B D F!

  All-P-uses/Some-C-uses!
  At least one path of each variable definition to each p-

use of the variable. If any variable definitions are not
covered use c-use!

  A B D F!

  All-uses!
  At least one path of each variable definition to each p-

use and each c-use of the definition!
  A B D F!

DFT–27

Rapps-Weyuker data flow hierarchy

All-Paths

All-DU-Paths!

All-Uses!

All-C-uses!
Some-P-uses!

All-Defs! All-P-uses!

All-Edges!

All-Nodes!

All-P-uses!
Some-C-uses!

DFT–28

Potential Anomalies

Anomalies! Explanation!
~ d! first define! Allowed!
du! define-use! Allowed - normal case!
dk! define-kill! Potential bug!
~ u! first use! Potential bug!
ud! use-define! Allowed - redefined!
uk! use-kill! Allowed!
~ k! first kill! Potential bug!
ku! kill-use! Serious defect!

Data flow node combinations for a variable

DFT–29

Potential Anomalies – 2

Anomalies! Explanation!
kd! kill-define! Allowed - redefined!
dd! define-define! Potential bug!
uu! use-use! Allowed - normal case!
kk! kill-kill! Potential bug!
d ~! define last! Potential bug!
u ~! use last! Allowed!
k ~! kill last! Allowed - normal case!

DFT–30

Data flow guidelines

  Data flow testing is good for computationally/control
intensive programs!
  If P-use of variables are computed, then P-use data

flow testing is good  
!

  Define/use testing provides a rigorous, systematic way to
examine points at which faults may occur.!

DFT–31

Data flow guidelines – 2

  Aliasing of variables causes serious problems! 
!

  Working things out by hand for anything but small
methods is hopeless 
!

  Compiler-based tools help in determining coverage values!

