
Dataflow Testing 

Chapter 10!



DFT–2 

Dataflow Testing 

  Testing All-Nodes and All-Edges in a control flow graph 
may miss significant test cases!

  Testing All-Paths in a control flow graph is often too time-
consuming!

  Can we select a subset of these paths that will reveal the 
most faults?!

  Dataflow Testing focuses on the points at which variables 
receive values and the points at which these values are 
used!
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Concordances 

  Data flow analysis is in part based concordance analysis 
such as that shown below – the result is a variable cross-
reference table!

  18   beta ← 2!
  25   alpha ← 3 × gamma + 1!
  51   gamma ← gamma + alpha - beta!
123   beta ← beta + 2 × alpha!
124   beta ← gamma + beta + 1!

! !      Defined !        Used!
alpha !    25 !          !      51, 123!
beta  !   18, 123, 124 !      51, 123, 124!
gamma    51 !                   25, 51, 124!
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Dataflow Analysis 

  Can reveal interesting bugs!
  A variable that is defined but never used!
  A variable that is used but never defined!
  A variable that is defined twice before it is used!
  Sending a modifier message to an object more than 

once between accesses!
  Deallocating a variable before it used!

  Container problem – deallocating container loses 
references to items in the container, memory leak!
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Dataflow Analysis – 2 

  The bugs can be found from a cross-reference table using 
static analysis!

  Paths from the definition of a variable to its use are more 
likely to contain bugs!
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Definitions 

  A node n  in the program graph is a defining node for 
variable v – DEF(v, n) – if the value of v is defined at the 
statement fragment in that node!
  Input, assignment, procedure calls 
!

  A node in the program graph is a usage node for variable 
v – USE(v, n) – if the value of v is used at the statement 
fragment in that node!
  Output, assignment, conditionals!
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Definitions – 2 

  In languages without garbage collection!
  A node in the program is a kill node for a variable v – 

KILL(v, n) – if the variable is deallocated at the 
statement fragment in that node.!

  A usage node is a predicate use, P-use, if variable v 
appears in a predicate expression!
  Always in nodes with outdegree ≥ 2!

  A usage node is a computation use, C-use, if variable v 
appears in a computation!
  Always in nodes with outdegree ≤ 1!
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Definitions – 3 

  A definition-use path, du-path,  with respect to a variable 
v is a path whose first node is a defining node for v, and 
its last node is a usage node for v 
!

  A du-path with no other defining node for v is a definition-
clear path, dc-path!
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1  int max = 0;!
2  int j = s.nextInt();!
3  while (j > 0)!
4    if (j > max) {!
5      max = j;!
6    }!
7    j = s.nextInt();!
8  }!
9  System.out.println(max);!

Example 1 –  Max program 

A definition of j 

A C-use of j 

P-uses of j & max 

A definition of j 

Definitions 
of max 

A C-use of max 
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Example 2 – Billing program 

calculateBill (usage : INTEGER) : INTEGER 
double bill = 0; 
 

if usage > 0 then bill = 40 fi 

if usage > 100 
then if usage ≤ 200 

 then bill = bill + (usage – 100) *0.5 
 else bill = bill + 50 + (usage – 200) * 0.1 

         if bill ≥ 100 then bill = bill * 0.9 fi 

        fi 
fi 
return bill 
end Kill node for bill 
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Max program – analysis 

Legend!
A..F Segment name!
d  defining node for j!
u  use node for j!

int max = 0;!
int j = s.nextInt(); 

while (j > 0)!

System.out.println(max);!

max = j;!

if (j > max)!

j = s.nextInt();!

A 

B 

C 

D 

E 

F 

d 

d 

u 

u 

u 

dc-paths j!
A B!
A B C!
A B C D!
E B!
E B C!
E B C D!
!
dc-paths max!
A B F!
A B C!
D E B C!
D E B F!
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Dataflow Coverage Metrics 

  Based on these definitions we can define a set of 
coverage metrics for a set of test cases!

  We have already seen!
  All-Nodes!
  All-Edges!
  All-Paths!

  Data flow has additional test metrics for a set T of paths in 
a program graph!
  All assume that all paths in T are feasible!



All-Defs Criterion 
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  The set T satisfies the All-Def criterion!
  For every variable v, T contains a dc-path from every 

defining node for v to at least one usage node for v!
  Not all use nodes need to be reached!

!v "V (P),nd " prog_ graph(P) | DEF(v, nd )
•#nu " prog_ graph(P) |USE(v,nu)• dc _ path(nd, nu)" T
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All-Uses Criterion 

  The set T satisfies the All-Uses criterion iff !
  For every variable v, T contains dc-paths that start at 

every defining node for v, and terminate at every usage 
node for v!

  Not DEF(v, n) × USE(v, n) – not possible to have a 
dc-path from every defining node to every usage 
node!

!
(!v " V (P), nu " prog _graph(P) |USE(v,nu)
•#nd " prog _graph(P) |DEF(v,nd )• dc _ path(nd,nu) " T )
$

all _ defs _ criterion
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All-P-uses / Some-C-uses 

  The set T satisfies the All-P-uses/Some-C-uses criterion iff!
  For every variable v in the program P, T contains a dc-

path from every defining node of v to every P-use node 
for v!

  If a definition of v has no P-uses, a dc-path leads to 
at least one C-use node for v!

(!v " V (P), nu " prog _graph(P) |P _use(v,nu)
•#nd " prog _graph(P) |DEF(v,nd )• dc _ path(nd,nu) " T )
$

all _ defs _ criterion
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All-C-uses / Some-P-uses 

  The test set T satisfies the All-C-uses/Some-P-uses 
criterion iff!
  For every variable v in the program P, T contains a dc-

path from every defining node of v to every C-use of v!
  If a definition of v has no C-uses, a dc-path leads to 

at least one P-use!

(!v " V (P), nu " prog _graph(P) |C _ use(v, nu)
•#nd " prog _graph(P) |DEF(v,nd )• dc _ path(nd,nu) " T )
$

all _ defs _ criterion
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Miles-per-gallon Program 

miles_per_gallon ( miles, gallons, price : INTEGER ) 
 

if gallons = 0 then  
 

    // Watch for division by zero!! 
 

    Print(“You have “ + gallons + “gallons of gas”) 
 

 

else if miles/gallons > 25 
 

    then print( “Excellent car.  Your mpg is “ 
                     + miles/gallon) 
 

    else print( “You must be going broke.  Your mpg is “ 
                    + miles/gallon + “ cost “ + gallons * price) 
 

fi 
end 
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Example du-paths 

  For each variable in the miles_per_gallon program see the 
test paths for the following dataflow path sets!
  All-Defs (AD)!
  All-C-uses (ACU)!
  All-P-uses (APU)!
  All-C-uses/Some-P-uses (ACU+P)!
  All-P-uses/Some-C-uses (APU+C)!
  All-uses!
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Mile-per-gallon Program – Segmented 

gasguzzler (miles, gallons, price : INTEGER)   A 
 

if gallons = 0 then       B 
 

    // Watch for division by zero!!     C 
 

    Print(“You have “ + gallons + “gallons of gas”) 
 

else if miles/gallons > 25      D 
 

    then print( “Excellent car.  Your mpg is “   E 
                     + miles/gallon) 
 

    else print( “You must be going broke.  Your mpg is “  F 
                    + miles/gallon + “ cost “ + gallons * price) 
 

fi         G 
end 
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MPG program graph 

Def miles, 
gallons 

P-use 
gallons 

P-use 
 miles, 
gallons 

C-use gallons 

C-use miles, gallons, price 

C-use miles, gallons 

Possible 
C-use miles, gallons 
But not common 
practice 
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MPG – DU-Paths for Miles 

  All-Defs!
  Each definition of each variable for at least one use of 

the definition!
  A B D!

  All-C-uses!
  At least one path of each variable to each c-use of the 

definition!
  A B D E !A B D F !A B D!

  All-P-uses!
  At least one path of each variable definition to each p-

use of the definition!
  A B D!
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MPG – DU-Paths for Miles – 2 

  All-C-uses/Some-P-uses!
  At least one path of each variable definition to each c-

use of the variable.  If any variable definitions are not 
covered use p-use!

  A B D E !A B D F !A B D!

  All-P-uses/Some-C-uses!
  At least one path of each variable definition to each p-

use of the variable.  If any variable definitions are not 
covered use c-use!

  A B D!

  All-uses!
  At least one path of each variable definition to each p-

use and each c-use of the definition!
  A B D !A B D E !A B D F!
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MPG – DU-Paths for Gallons 

  All-Defs!
  Each definition of each variable for at least one use of 

the definition!
  A B!

  All-C-uses!
  At least one path of each variable to each c-use of the 

definition!
  A B C    A B D E    A B D F    A B D!

  All-P-uses!
  At least one path of each variable definition to each p-

use of the definition!
  A B ! !A B D!
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MPG – DU-Paths for Gallons – 2 

  All-C-uses/Some-P-uses!
  At least one path of each variable definition to each c-

use of the variable.  If any variable definitions are not 
covered use p-use!

  A B C    A B D E    A B D F    A B D!

  All-P-uses/Some-C-uses!
  At least one path of each variable definition to each p-

use of the variable.  If any variable definitions are not 
covered use c-use!

  A B ! !A B D!

  All-uses!
  At least one path of each variable definition to each p-

use and each c-use of the definition!
  A B     A B C     A B D     A B D E     A B D F!
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MPG – DU-Paths for Price 

  All-Defs!
  Each definition of each variable for at least one use of 

the definition!
  A B D F!

  All-C-uses!
  At least one path of each variable to each c-use of the 

definition!
  A B D F!

  All-P-uses!
  At least one path of each variable definition to each p-

use of the definition!
  none!
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MPG – DU-Paths for Price – 2 

  All-C-uses/Some-P-uses!
  At least one path of each variable definition to each c-

use of the variable.  If any variable definitions are not 
covered use p-use!

  A B D F!

  All-P-uses/Some-C-uses!
  At least one path of each variable definition to each p-

use of the variable.  If any variable definitions are not 
covered use c-use!

  A B D F!

  All-uses!
  At least one path of each variable definition to each p-

use and each c-use of the definition!
  A B D F!
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Rapps-Weyuker data flow hierarchy 

All-Paths 

All-DU-Paths!

All-Uses!

All-C-uses!
Some-P-uses!

All-Defs! All-P-uses!

All-Edges!

All-Nodes!

All-P-uses!
Some-C-uses!
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Potential Anomalies 

Anomalies! Explanation!
~ d! first define! Allowed!
du! define-use! Allowed - normal case!
dk! define-kill! Potential bug!
~ u! first use! Potential bug!
ud! use-define! Allowed - redefined!
uk! use-kill! Allowed!
~ k! first kill! Potential bug!
ku! kill-use! Serious defect!

Data flow node combinations for a variable 
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Potential Anomalies – 2 

Anomalies! Explanation!
kd! kill-define! Allowed - redefined!
dd! define-define! Potential bug!
uu! use-use! Allowed - normal case!
kk! kill-kill! Potential bug!
d ~! define last! Potential bug!
u ~! use last! Allowed!
k ~! kill last! Allowed - normal case!
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Data flow guidelines 

  Data flow testing is good for computationally/control 
intensive programs!
  If P-use of variables are computed, then P-use data 

flow testing is good  
!

  Define/use testing provides a rigorous, systematic way to 
examine points at which faults may occur.!



DFT–31 

Data flow guidelines – 2 

  Aliasing of variables causes serious problems! 
!

  Working things out by hand for anything but small 
methods is hopeless 
!

  Compiler-based tools help in determining coverage values!


