
Integration Testing
Functional Decomposition Based

Chapter 13

IntF–2

Integration Testing

 Test the interfaces and interactions among separately
tested units

 Three different approaches
 Based on functional decomposition
 Based on call graphs
 Based on paths

IntF–3

Functional Decomposition

 Functional Decomposition
 Create a functional hierarchy for the software
 Problem is broken up into independent task units, or

functions
 Units can be run either

 Sequentially and in a synchronous call-reply
manner

 Or simultaneously on different processors

 Used during planning, analysis and design

IntF–4

SATM Units

1 1 SATM system
A 1.1 Device sense & control
D 1.1.1 Door sense & control
2 1.1.1.1 Get door status
3 1.1.1.2 Control door
4 1.1.1.3 Dispense cash
E 1.1.2 Slot sense & control
5 1.1.2.1 Watch card slot
6 1.1.2.2 Get deposit slot status
7 1.1.2.3 Control card Roller
8 1.1.2.4 Control Envelope Roller
9 1.1.2.5 Read card strip
10 1.2 Central bank comm.
11 1.2.1 Get PIN for PAN
12 1.2.2 Get account status
13 1.2.3 Post daily transactions
B 1.3 Terminal sense & control

14 1.3.1 Screen door
15 1.3.2 Key sensor
C 1.4 Manage session
16 1.4.1 Validate card
17 1.4.2 Validate PIN
18 1.4.2.1 Get PIN
F 1.4.3 Close session
19 1.4.3.1 New transaction request
20 1.4.3.2 Print receipt
21 1.4.3.3 Post transaction local
22 1.4.4 Manage transaction
23 1.4.4.1 Get transaction type
24 1.4.4.2 Get account type
25 1.4.4.3 Report balance
26 1.4.4.4 Process deposit
27 1.4.4.5 Process withdrawal

Unit Level Name Unit Level Name

IntF–5

Functional Decomposition of the SATM System

1

A 10 B

D E 11 12 13 14 15

2 3 4 5 6 7 8 9

C

16 17 F 22

18 19 20 21 23 24 25 26 27

Table 1: SATM Units and Abbreviated Names
Unit Level Unit Name
1! 1! SATM System
A! 1.1! Device Sense & Control
D! 1.1.1! Door Sense & Control
2! 1.1.1.1 ! Get Door Status
3! 1.1.1.2 ! Control Door
4! 1.1.1.3 ! Dispense Cash
E! 1.1.2! Slot Sense & Control
5! 1.1.2.1 ! WatchCardSlot
6! 1.1.2.2 ! Get Deposit Slot Status
7! 1.1.2.3 ! Control Card Roller
8! 1.1.2.3 ! Control Envelope Roller
9! 1.1.2.5 ! Read Card Strip
10! 1.2! Central Bank Comm.
11! 1.2.1! Get PIN for PAN
12! 1.2.2! Get Account Status
13! 1.2.3! Post Daily Transactions

Unit Level Unit Nam
B! 1.3! Terminal Sense & Control
14! 1.3.1! Screen Driver
15! 1.3.2! Key Sensor
C! 1.4! Manage Session
16! 1.4.1 ! Validate Card
17! 1.4.2! Validate PIN
18! 1.4.2.1 ! GetPIN
F! 1.4.3 ! Close Session
19! 1.4.3.1 ! New Transaction Request
20! 1.4.3.2 ! Print Receipt
21! 1.4.3.3 ! Post Transaction Local
22! 1.4.4! Manage Transaction
23! 1.4.4.1 ! Get Transaction Type
24! 1.4.4.2 ! Get Account Type
25! 1.4.4.3 ! Report Balance
26! 1.4.4.4 ! Process Deposit
27! 1.4.4.5 ! Process Withdrawal

SATM functional decomposition tree

IntF–6

Decomposition-based integration strategies

 What are the decomposition-based integration
strategies?

IntF–7

Decomposition-based integration strategies – 2

 Top-down

 Bottom-up

 Sandwich

 Big bang

IntF–8

Big bang integration process

 What is the big bang integration process.

IntF–9

Big bang integration process – 2

 All units are compiled together

 All units are tested together

IntF–10

Big bang integration issues

 What are the issues (advantages and drawbacks)?

IntF–11

Big bang integration issues – 2

 Failures will occur!

 No clues to isolate location of faults

 No stubs or drivers to write

IntF–12

Top-down integration

 What is the top-down integration process?

IntF–13

Top Subtree
Sessions 1-4

Second Level Subtree
Sessions 5-8

Bottom Level Subtree
 Sessions 9-13

Top-Down integration example

IntF–14

Top-Down integration process

 Strategy
 Focuses on testing the top layer or the controlling

subsystem first
 The main, or the root of the call tree

 General process is
 To gradually add more subsystems that are

referenced/required by the already tested subsystems
when testing the application

 Do this until all subsystems are incorporated into the
test

IntF–15

Top-Down integration process – 2

 Stubs are needed to do the testing

 A program or a method that simulates the input-output
functionality of a missing subsystem by answering to
the decomposition sequence of the calling subsystem
and returning back simulated data

IntF–16

Top-Down integration issues

 What are the issues?

IntF–17

Top-Down integration issues – 2

 Writing stubs can be difficult
 Especially when parameter passing is complex.
 Stubs must allow all possible conditions to be tested

 Possibly a very large number of stubs may be required
 Especially if the lowest level of the system contains

many functional units

IntF–18

Top-Down integration issues – 3

 One solution to avoid too many stubs
 Modified top-down testing strategy

 Test each layer of the system decomposition
individually before merging the layers

 Disadvantage of modified top-down testing
 Both stubs and drivers are needed

IntF–19

Bottom-up integration

 What is the bottom-up integration process?

IntF–20

Bottom-up integration example

Top Subtree
Sessions 10-13

Second Level Subtree
Sessions 6-9

Bottom Level Subtree
Sessions 1-5

IntF–21

Bottom-Up integration process

 Bottom-Up integration strategy
 Focuses on testing the units at the lowest levels first

 Gradually includes the subsystems that
reference/require the previously tested subsystems

 Do until all subsystems are included in the testing

IntF–22

Bottom-Up integration process – 2

 Drivers are needed to do the testing

 A driver is a specialized routine that passes test cases
to a subsystem

 Subsystem is not everything below current root
module, but a sub-tree down to the leaf level

IntF–23

Bottom-up integration issues

 What are the issues?

IntF–24

Bottom-Up Integration Issues

 Not an optimal strategy for functionally decomposed
systems
 Tests the most important subsystem (user interface)

last

 More useful for integrating object-oriented systems

 Drivers may be more complicated than stubs

 Less drivers than stubs are typically required

IntF–25

Sandwich integration

 What is the sandwich integration process?

IntF–26

Sandwich integration example

Sandwich 1
Sessions 1-3

Sandwich 2
Sessions 4-13

Sandwich 3
Sessions 14-15

IntF–27

Sandwich integration process

 Combines top-down strategy with bottom-up strategy

 Doing big bang on a subtree

IntF–28

Sandwich integration issues

 What are the issues?

IntF–29

Sandwich integration issues – 2

 Less stub and driver development effort

 Added difficulty in fault isolation

IntF–30

Integration test session

 A session is a test suite that tests one edge in the tree
 Each session tests the combining of two parts

 This is different from the textbook

#sessions = #edges

#sessions = #nodes – #leaves + #edges
 = 2 #edges – #leaves + 1

Alternately

#sessions = #internal_nodes + #edges

IntF–31

Integration work numbers

 For top-down integration
 #nodes – 1 = #edges stubs are needed

 For bottom-up integration
 #nodes – #leaves = #internal_nodes

drivers are needed

 The number integrated units for top-down and bottom-up

#integrated_units = #internal_nodes

IntF–32

Integration work numbers

 For SATM have 32 integration test sessions
 Correspond to 32 separate sets of test cases

 For top-down integration
 32 stubs are needed

 For bottom-up integration
 10 drivers are needed

 For top-down and bottom-up
 10 integration units

IntF–33

Decomposition-based drawback

 What is the major drawback of decomposition-based
integration?

IntF–34

Decomposition-based drawback – 2

 It is functionally based
 Has the problems of all functional testing

 How do we overcome the problems?

IntF–35

Decomposition-based drawback – 3

 It is functionally based
 Has the problems of all functional testing

 How do we overcome the problems?
 Move to structural-based testing

